Simulation of the anisotropic material properties in polymers obtained in thermal forming process

In an attempt to improve the quality in finite element analysis of thermoformed components, a method for predicting the thickness distribution is presented. The strain induced anisotropic material behaviour in the amorphous polymers of concern is also taken into account in the method. The method com...

Full description

Bibliographic Details
Main Authors: Bazzi, Ali, Angelou, Andreas
Format: Others
Language:English
Published: Tekniska Högskolan, Högskolan i Jönköping, JTH, Produktutveckling 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-40792
Description
Summary:In an attempt to improve the quality in finite element analysis of thermoformed components, a method for predicting the thickness distribution is presented. The strain induced anisotropic material behaviour in the amorphous polymers of concern is also taken into account in the method. The method comprises of obtaining raw material data from experiments, followed by a simulation of the vacuum thermoforming process where hyperelastic material behaviour is assumed. The theory of hyperelasticity that was applied was based on the Ogden model and implemented in the FE-software LS-DYNA. Material behaviour from thermoformed prototypes is examined by experiments and implemented together with the mapped results from the thermoforming simulation in a succeeding FE-model. For the latter, the three-parameter Barlat model was suggested, giving the possibility to account for anisotropic material behaviour based on an initial plastic strain.