Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics

Additive manufacturing (AM) is a general name used for production methodswhich have the capabilities of producing components directly from 3D computeraided design (CAD) data by adding material layer-by-layer until a final component is achieved. Included here are powder bed technologies, laminated ob...

Full description

Bibliographic Details
Main Author: Segerstark, Andreas
Format: Others
Language:English
Published: Högskolan Väst, Avd för tillverkningsprocesser 2015
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-8796
http://nbn-resolving.de/urn:isbn:978-91-87531-24-8 (e-version)
http://nbn-resolving.de/urn:isbn:978-91-87531-25-5 (print)
id ndltd-UPSALLA1-oai-DiVA.org-hv-8796
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-hv-87962016-02-11T05:11:05ZAdditive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural CharacteristicsengSegerstark, AndreasHögskolan Väst, Avd för tillverkningsprocesserTrollhättan : University West2015Additive manufacturingLaser metal depositionpowdersuperalloyAdditive manufacturing (AM) is a general name used for production methodswhich have the capabilities of producing components directly from 3D computeraided design (CAD) data by adding material layer-by-layer until a final component is achieved. Included here are powder bed technologies, laminated object manufacturing and deposition technologies. The latter technology is used in this study.Laser metal deposition using powder as an additive (LMD-p) is an AM processwhich uses a multi-axis computer numerical control (CNC) machine or robot toguide the laser beam and powder nozzle over the deposition surface. Thecomponent is built by depositing adjacent beads layer by layer until thecomponent is completed. LMD-p has lately gained attention as a manufacturing method which can add features to semi-finished components or as a repair method. LMD-p introduce a low heat input compared to arc welding methods and is therefore well suited in applications where a low heat input is of an essence. For instance, in repair of sensitive parts where too much heating compromises the integrity of the part.The main part of this study has been focused on correlating the main processparameters to effects found in the material which in this project is the superalloy Alloy 718. It has been found that the most influential process parameters are the laser power, scanning speed, powder feeding rate and powder standoff distance and that these parameters has a significant effect on the dimensionalcharacteristics of the material such as height and width of a single deposit as wellas the straightness of the top surface and the penetration depth.To further understand the effects found in the material, temperaturemeasurements has been conducted using a temperature measurement methoddeveloped and evaluated in this project. This method utilizes a thin stainless steel sheet to shield the thermocouple from the laser light. This has proved to reduce the influence of the emitted laser light on the thermocouples. Licentiate thesis, comprehensive summaryinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-8796urn:isbn:978-91-87531-24-8 (e-version)urn:isbn:978-91-87531-25-5 (print)Licentiate Thesis : University West ; 8application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Additive manufacturing
Laser metal deposition
powder
superalloy
spellingShingle Additive manufacturing
Laser metal deposition
powder
superalloy
Segerstark, Andreas
Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics
description Additive manufacturing (AM) is a general name used for production methodswhich have the capabilities of producing components directly from 3D computeraided design (CAD) data by adding material layer-by-layer until a final component is achieved. Included here are powder bed technologies, laminated object manufacturing and deposition technologies. The latter technology is used in this study.Laser metal deposition using powder as an additive (LMD-p) is an AM processwhich uses a multi-axis computer numerical control (CNC) machine or robot toguide the laser beam and powder nozzle over the deposition surface. Thecomponent is built by depositing adjacent beads layer by layer until thecomponent is completed. LMD-p has lately gained attention as a manufacturing method which can add features to semi-finished components or as a repair method. LMD-p introduce a low heat input compared to arc welding methods and is therefore well suited in applications where a low heat input is of an essence. For instance, in repair of sensitive parts where too much heating compromises the integrity of the part.The main part of this study has been focused on correlating the main processparameters to effects found in the material which in this project is the superalloy Alloy 718. It has been found that the most influential process parameters are the laser power, scanning speed, powder feeding rate and powder standoff distance and that these parameters has a significant effect on the dimensionalcharacteristics of the material such as height and width of a single deposit as wellas the straightness of the top surface and the penetration depth.To further understand the effects found in the material, temperaturemeasurements has been conducted using a temperature measurement methoddeveloped and evaluated in this project. This method utilizes a thin stainless steel sheet to shield the thermocouple from the laser light. This has proved to reduce the influence of the emitted laser light on the thermocouples.
author Segerstark, Andreas
author_facet Segerstark, Andreas
author_sort Segerstark, Andreas
title Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics
title_short Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics
title_full Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics
title_fullStr Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics
title_full_unstemmed Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics
title_sort additive manufacturing using alloy 718 powder : influence of laser metal deposition process parameters on microstructural characteristics
publisher Högskolan Väst, Avd för tillverkningsprocesser
publishDate 2015
url http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-8796
http://nbn-resolving.de/urn:isbn:978-91-87531-24-8 (e-version)
http://nbn-resolving.de/urn:isbn:978-91-87531-25-5 (print)
work_keys_str_mv AT segerstarkandreas additivemanufacturingusingalloy718powderinfluenceoflasermetaldepositionprocessparametersonmicrostructuralcharacteristics
_version_ 1718187067861630976