Influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels

Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments...

Full description

Bibliographic Details
Main Author: Zhou, Nian
Format: Others
Language:English
Published: KTH, Yt- och korrosionsvetenskap 2016
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180817
http://nbn-resolving.de/urn:isbn:978-91-7595-838-5
id ndltd-UPSALLA1-oai-DiVA.org-kth-180817
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-kth-1808172016-02-04T05:10:16ZInfluence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steelsengZhou, NianKTH, Yt- och korrosionsvetenskapStockholm2016Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process.  This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service. <p>QC 20160203</p>Licentiate thesis, comprehensive summaryinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180817urn:isbn:978-91-7595-838-5TRITA-CHE-Report, 1654-1081 ; 2016:5application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
description Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process.  This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service. === <p>QC 20160203</p>
author Zhou, Nian
spellingShingle Zhou, Nian
Influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels
author_facet Zhou, Nian
author_sort Zhou, Nian
title Influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels
title_short Influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels
title_full Influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels
title_fullStr Influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels
title_full_unstemmed Influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels
title_sort influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels
publisher KTH, Yt- och korrosionsvetenskap
publishDate 2016
url http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180817
http://nbn-resolving.de/urn:isbn:978-91-7595-838-5
work_keys_str_mv AT zhounian influenceofgrindingoperationsonsurfaceintegrityandchlorideinducedstresscorrosioncrackingofstainlesssteels
_version_ 1718179179851153408