Summary: | In relation to the increasing interest in implementing smart cities, deployment of widespread wireless sensor networks (WSNs) has become a current hot topic. Among the application’s greatest challenges, there is still progress to be made concerning energy consumption and quality of service. Consequently, this project aims to explore a series of feasible solutions to improve the WSN energy efficiency for data aggregation by the WSN. This by strategically adjusting the position of the receiving base station and the packet rate of the WSN nodes. Additionally, the low-energy adaptive clustering hierarchy (LEACH) protocol is coupled with the WSN state of charge (SoC). For this thesis, a WSN was defined as a two dimensional area which contains sensor nodes and a mobile sink, i.e. a movable base station. Subsequent to the rigorous analyses of the WSN data clustering principles and system-wide dynamics, two different developing strategies, model-based and data-driven designs, were employed to develop two corresponding control approaches, model predictive control and reinforcement learning, on WSN energy management. To test their performance, a simulation environment was thus developed in Python, including the extended LEACH protocol. The amount of data transmitted by an energy unit is adopted as the index to estimate the control performance. The simulation results show that the model based controller was able to aggregate over 22% more bits than only using the LEACH protocol. Whilst the data driven controller had a worse performance than the LEACH network but showed potential for smaller sized WSNs containing a fewer amount of nodes. Nonetheless, the extension of the LEACH protocol did not give rise to obvious improvement on energy efficiency due to a wide range of differing results. === I samband med det ökande intresset för att implementera så kallade smart cities, har användningen av utbredda trådlösa sensor nätverk (WSN) blivit ett intresseområde. Bland applikationens största utmaningar, finns det fortfarande förbättringar med avseende på energiförbrukning och servicekvalité. Därmed så inriktar sig detta projekt på att utforska en mängd möjliga lösningar för att förbättra energieffektiviteten för dataaggregation inom WSN. Detta gjordes genom att strategiskt justera positionen av den mottagande basstationen samt paketfrekvensen för varje nod. Dessutom påbyggdes low-energy adaptive clustering hierarchy (LEACH) protokollet med WSN:ets laddningstillstånd. För detta examensarbete definierades ett WSN som ett två dimensionellt plan som innehåller sensor noder och en mobil basstation, d.v.s. en basstation som går att flytta. Efter rigorös analys av klustringsmetoder samt dynamiken av ett WSN, utvecklades två kontrollmetoder som bygger på olika kontrollstrategier. Dessa var en modelbaserad MPC kontroller och en datadriven reinforcement learning kontroller som implementerades för att förbättra energieffektiviteten i WSN. För att testa prestandan på dom två kontrollmetoderna, utvecklades en simulations platform baserat på Python, tillsamans med påbyggnaden av LEACH protokollet. Mängden data skickat per energienhet användes som index för att approximera kontrollprestandan. Simuleringsresultaten visar att den modellbaserade kontrollern kunde öka antalet skickade datapacket med 22% jämfört med när LEACH protokollet användes. Medans den datadrivna kontrollern hade en sämre prestanda jämfört med när enbart LEACH protokollet användes men den visade potential för WSN med en mindre storlek. Påbyggnaden av LEACH protokollet gav ingen tydlig ökning med avseende på energieffektiviteten p.g.a. en mängd avvikande resultat.
|