How does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine?
This report is about how a general-purpose neural network (LC0) operates compares to the domain-specific adapted chess engine (Stockfish). Specifically, to examine the depth and total simulations per move. Furthermore, to investigate how the selection of the moves are conducted. The conclusion was t...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2020
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281964 |
id |
ndltd-UPSALLA1-oai-DiVA.org-kth-281964 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-kth-2819642021-08-03T09:28:36ZHow does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine?engIshaq Ali, JavidKTH, Skolan för elektroteknik och datavetenskap (EECS)2020Computer and Information SciencesData- och informationsvetenskapThis report is about how a general-purpose neural network (LC0) operates compares to the domain-specific adapted chess engine (Stockfish). Specifically, to examine the depth and total simulations per move. Furthermore, to investigate how the selection of the moves are conducted. The conclusion was that Stockfish searches and evaluates a significantly larger amount of positions than LC0. Moreover, Stockfish analyses every possible move at a rather great depth. On the contrary, LC0 determines the moves sensibly and explores a few moves at a greater depth. Consequently, the argument can be made that a general-purpose neural network can conserve resources and calculation time that could serve us towards sustainability. However, training the neural network is not very environmentally friendly. Therefore, stakeholders should seek collaboration and have a generalpurpose approach that could solve problems in many fields. Denna rapport handlar om hur ett allmänt neuronnät (LC0) som spelar schack fungerar jämför med den domänspecifika anpassade schackmotorn (Stockfish). Specifikt, att granska djupet samt totala simuleringar per drag för att uppfatta hur dragen väljs och värderas. Slutsatsen var att Stockfish söker och värderar betydlig fler positioner än LC0. Vidare, Stockfish förbrukade mer resurser, alltså ungefär sju gånger mer elförbrukning. Ett argument gjordes att ett allmänt neuronnät har potentialen att spara resurser och hjälpa oss mot ett hållbart samhälle. Men, det kostar mycket resurser att träna neuronnäten och därför ska vi försöka samarbeta för att undvika onödiga träningar samt lära från andras misstag. Slutligen, vi måste sträva efter ett allmänt neuronnät som ska kunna lösa många problem på flera fält. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281964TRITA-EECS-EX ; 2020:625application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Computer and Information Sciences Data- och informationsvetenskap |
spellingShingle |
Computer and Information Sciences Data- och informationsvetenskap Ishaq Ali, Javid How does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine? |
description |
This report is about how a general-purpose neural network (LC0) operates compares to the domain-specific adapted chess engine (Stockfish). Specifically, to examine the depth and total simulations per move. Furthermore, to investigate how the selection of the moves are conducted. The conclusion was that Stockfish searches and evaluates a significantly larger amount of positions than LC0. Moreover, Stockfish analyses every possible move at a rather great depth. On the contrary, LC0 determines the moves sensibly and explores a few moves at a greater depth. Consequently, the argument can be made that a general-purpose neural network can conserve resources and calculation time that could serve us towards sustainability. However, training the neural network is not very environmentally friendly. Therefore, stakeholders should seek collaboration and have a generalpurpose approach that could solve problems in many fields. === Denna rapport handlar om hur ett allmänt neuronnät (LC0) som spelar schack fungerar jämför med den domänspecifika anpassade schackmotorn (Stockfish). Specifikt, att granska djupet samt totala simuleringar per drag för att uppfatta hur dragen väljs och värderas. Slutsatsen var att Stockfish söker och värderar betydlig fler positioner än LC0. Vidare, Stockfish förbrukade mer resurser, alltså ungefär sju gånger mer elförbrukning. Ett argument gjordes att ett allmänt neuronnät har potentialen att spara resurser och hjälpa oss mot ett hållbart samhälle. Men, det kostar mycket resurser att träna neuronnäten och därför ska vi försöka samarbeta för att undvika onödiga träningar samt lära från andras misstag. Slutligen, vi måste sträva efter ett allmänt neuronnät som ska kunna lösa många problem på flera fält. |
author |
Ishaq Ali, Javid |
author_facet |
Ishaq Ali, Javid |
author_sort |
Ishaq Ali, Javid |
title |
How does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine? |
title_short |
How does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine? |
title_full |
How does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine? |
title_fullStr |
How does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine? |
title_full_unstemmed |
How does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine? |
title_sort |
how does a general-purpose neural network with no domain knowledge operate as opposed to a domain-specific adapted chess engine? |
publisher |
KTH, Skolan för elektroteknik och datavetenskap (EECS) |
publishDate |
2020 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281964 |
work_keys_str_mv |
AT ishaqalijavid howdoesageneralpurposeneuralnetworkwithnodomainknowledgeoperateasopposedtoadomainspecificadaptedchessengine |
_version_ |
1719458652921790464 |