Highway Traffic State Estimation and Short-term Prediction

Traffic congestion is increasing in almost all large cities, leading to a number of negative effects such as pollution and delays. However, building new roads is not a feasible solution. Instead, the use of the existing road network has to be optimized, together with a shift towards more sustainable...

Full description

Bibliographic Details
Main Author: Allström, Andreas
Format: Others
Language:English
Published: Linköpings universitet, Kommunikations- och transportsystem 2016
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128617
http://nbn-resolving.de/urn:isbn:978-91-7685-757-1
id ndltd-UPSALLA1-oai-DiVA.org-liu-128617
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-liu-1286172019-10-29T22:09:15ZHighway Traffic State Estimation and Short-term PredictionengAllström, AndreasLinköpings universitet, Kommunikations- och transportsystemLinköpings universitet, Tekniska fakultetenLinköping2016Transport Systems and LogisticsTransportteknik och logistikControl EngineeringReglerteknikComputer EngineeringDatorteknikComputer SciencesDatavetenskap (datalogi)Communication StudiesKommunikationsvetenskapTraffic congestion is increasing in almost all large cities, leading to a number of negative effects such as pollution and delays. However, building new roads is not a feasible solution. Instead, the use of the existing road network has to be optimized, together with a shift towards more sustainable transport modes. In order to achieve this there are several challenges that needs to be addressed. One challenge is the ability to provide accurate information about the current and future traffic state. This information is an essential input to the traffic management center and can be used to influence the choices made by the travelers. Accurate information about the traffic state on highways, where the potential to manage and control the traffic in general is very high, would be of great significance for the traffic managers. It would help the traffic managers to take action before the system reaches congestion and limit the effects of it. At the same time, the collection of traffic data is slowly shifting from fixed sensors to more probe based data collection. This requires an adaptation and further development of the traditional traffic models in order for them to handle and take advantage of the characteristics of all types of data, not just data from the traditionally used fixed sensors. The objective of this thesis is to contribute to the development and implementation of a model for estimation and prediction of the current and future traffic state and to facilitate an adaptation of the model to the conditions of the highway in Stockholm. The model used is a version of the Cell Transmission Model (CTM-v) where the velocity is used as the state variable. Thus, together with an Ensemble Kalman Filter (EnKF) it can be used to fuse different types of point speed measurements. The model is developed to run in real-time for a large network. Furthermore, a two-stage process used to calibrate the model is implemented. The results from the calibration and validation show that once the model is calibrated, the estimated travel times corresponds well with the ground truth travel times collected from Bluetooth sensors. In order to produce accurate short-term predictions for various networks and conditions it is vital to combine different methods. We have implemented and evaluated a hybrid prediction approach that assimilates parametric and non-parametric short-term traffic state prediction. To predict mainline sensor data we use a neural network, while the CTM-v is ran forward in time in order to predict future traffic states. The results show that both the hybrid approach and the CTM-v prediction without the additional predicted mainline sensor data is superior to a naïve prediction method for longer prediction horizons. Licentiate thesis, monographinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128617urn:isbn:978-91-7685-757-1doi:10.3384/lic.diva-128617Linköping Studies in Science and Technology. Thesis, 0280-7971 ; 1749application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Transport Systems and Logistics
Transportteknik och logistik
Control Engineering
Reglerteknik
Computer Engineering
Datorteknik
Computer Sciences
Datavetenskap (datalogi)
Communication Studies
Kommunikationsvetenskap
spellingShingle Transport Systems and Logistics
Transportteknik och logistik
Control Engineering
Reglerteknik
Computer Engineering
Datorteknik
Computer Sciences
Datavetenskap (datalogi)
Communication Studies
Kommunikationsvetenskap
Allström, Andreas
Highway Traffic State Estimation and Short-term Prediction
description Traffic congestion is increasing in almost all large cities, leading to a number of negative effects such as pollution and delays. However, building new roads is not a feasible solution. Instead, the use of the existing road network has to be optimized, together with a shift towards more sustainable transport modes. In order to achieve this there are several challenges that needs to be addressed. One challenge is the ability to provide accurate information about the current and future traffic state. This information is an essential input to the traffic management center and can be used to influence the choices made by the travelers. Accurate information about the traffic state on highways, where the potential to manage and control the traffic in general is very high, would be of great significance for the traffic managers. It would help the traffic managers to take action before the system reaches congestion and limit the effects of it. At the same time, the collection of traffic data is slowly shifting from fixed sensors to more probe based data collection. This requires an adaptation and further development of the traditional traffic models in order for them to handle and take advantage of the characteristics of all types of data, not just data from the traditionally used fixed sensors. The objective of this thesis is to contribute to the development and implementation of a model for estimation and prediction of the current and future traffic state and to facilitate an adaptation of the model to the conditions of the highway in Stockholm. The model used is a version of the Cell Transmission Model (CTM-v) where the velocity is used as the state variable. Thus, together with an Ensemble Kalman Filter (EnKF) it can be used to fuse different types of point speed measurements. The model is developed to run in real-time for a large network. Furthermore, a two-stage process used to calibrate the model is implemented. The results from the calibration and validation show that once the model is calibrated, the estimated travel times corresponds well with the ground truth travel times collected from Bluetooth sensors. In order to produce accurate short-term predictions for various networks and conditions it is vital to combine different methods. We have implemented and evaluated a hybrid prediction approach that assimilates parametric and non-parametric short-term traffic state prediction. To predict mainline sensor data we use a neural network, while the CTM-v is ran forward in time in order to predict future traffic states. The results show that both the hybrid approach and the CTM-v prediction without the additional predicted mainline sensor data is superior to a naïve prediction method for longer prediction horizons.
author Allström, Andreas
author_facet Allström, Andreas
author_sort Allström, Andreas
title Highway Traffic State Estimation and Short-term Prediction
title_short Highway Traffic State Estimation and Short-term Prediction
title_full Highway Traffic State Estimation and Short-term Prediction
title_fullStr Highway Traffic State Estimation and Short-term Prediction
title_full_unstemmed Highway Traffic State Estimation and Short-term Prediction
title_sort highway traffic state estimation and short-term prediction
publisher Linköpings universitet, Kommunikations- och transportsystem
publishDate 2016
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128617
http://nbn-resolving.de/urn:isbn:978-91-7685-757-1
work_keys_str_mv AT allstromandreas highwaytrafficstateestimationandshorttermprediction
_version_ 1719280440943050752