Data-driven Condition Monitoring in Mining Vehicles

Situation awareness is a crucial capability of any autonomous system, including mining vehicles such as drill rigs and mine trucks. Typically situation awareness is interpreted as the capability of an autonomous system to interpret its surroundings and the intentions of other agents. The internal sy...

Full description

Bibliographic Details
Main Author: Jakobsson, Erik
Format: Others
Language:English
Published: Linköpings universitet, Fordonssystem 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162132
http://nbn-resolving.de/urn:isbn:9789179299729
id ndltd-UPSALLA1-oai-DiVA.org-liu-162132
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-liu-1621322021-12-29T05:59:34ZData-driven Condition Monitoring in Mining VehiclesengJakobsson, Erik0000-0001-9493-7256Linköpings universitet, FordonssystemLinköpings universitet, Tekniska fakulteten202100-3096Linköping2019Vehicle EngineeringFarkostteknikSituation awareness is a crucial capability of any autonomous system, including mining vehicles such as drill rigs and mine trucks. Typically situation awareness is interpreted as the capability of an autonomous system to interpret its surroundings and the intentions of other agents. The internal system awareness however, is often not receiving the same focus, even though the success of any given mission is completely dependent of the condition of the agents themselves. The internal system awareness in the form of vehicle health is the focus of this thesis. As the mining industry becomes increasingly automated, and vehicles become increasingly advanced, the need for condition monitoring and prognostics will continue to rise. This thesis explores data-driven methods that estimate the health of mining vehicles to accommodate those needs. We do so by utilizing available sensor signals, common on a large amount of mining vehicles, to make assessments of the current vehicle condition and tasks. The mining industry is characterized by small series of highly specialized vehicles, which affects the possibility to use more traditional prognostic solutions. The resulting health information can be used both to aid in tasks such as maintenance planning, but also as an important input to decision making for the planning system, i.e. how to run the vehicle for minimum wear and damage, while maintaining other mission objectives. The contributions include: a) A method to use operational data to estimate damage on the frame of a mine truck. This is done using system identification to find a model describing stresses in the structure with input from other sensors such as accelerometers, load sensors and pressure sensors. The estimated stress time signal is in turn used to calculate accumulated damage, and is shown to reveal interesting conclusions on driver behavior. b) A method to characterize the different driving tasks by using an accelerometer and a convolutional neural network. We show that the model is capable of classifying the vehicle task correctly in 96 % of the cases. And finally c), a system for underground road monitoring, where a quarter car model and a Kalman filter are used to generate an estimate of the road profile, while positioning the vehicle using inertial measurements and access point signal strength. <p>Ytterligare forskningsfinansiär: Epiroc Rock Drills AB</p>Licentiate thesis, comprehensive summaryinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162132urn:isbn:9789179299729doi:10.3384/lic-diva-162132Linköping Studies in Science and Technology. Licentiate Thesis, 0280-7971 ; 1856application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Vehicle Engineering
Farkostteknik
spellingShingle Vehicle Engineering
Farkostteknik
Jakobsson, Erik
Data-driven Condition Monitoring in Mining Vehicles
description Situation awareness is a crucial capability of any autonomous system, including mining vehicles such as drill rigs and mine trucks. Typically situation awareness is interpreted as the capability of an autonomous system to interpret its surroundings and the intentions of other agents. The internal system awareness however, is often not receiving the same focus, even though the success of any given mission is completely dependent of the condition of the agents themselves. The internal system awareness in the form of vehicle health is the focus of this thesis. As the mining industry becomes increasingly automated, and vehicles become increasingly advanced, the need for condition monitoring and prognostics will continue to rise. This thesis explores data-driven methods that estimate the health of mining vehicles to accommodate those needs. We do so by utilizing available sensor signals, common on a large amount of mining vehicles, to make assessments of the current vehicle condition and tasks. The mining industry is characterized by small series of highly specialized vehicles, which affects the possibility to use more traditional prognostic solutions. The resulting health information can be used both to aid in tasks such as maintenance planning, but also as an important input to decision making for the planning system, i.e. how to run the vehicle for minimum wear and damage, while maintaining other mission objectives. The contributions include: a) A method to use operational data to estimate damage on the frame of a mine truck. This is done using system identification to find a model describing stresses in the structure with input from other sensors such as accelerometers, load sensors and pressure sensors. The estimated stress time signal is in turn used to calculate accumulated damage, and is shown to reveal interesting conclusions on driver behavior. b) A method to characterize the different driving tasks by using an accelerometer and a convolutional neural network. We show that the model is capable of classifying the vehicle task correctly in 96 % of the cases. And finally c), a system for underground road monitoring, where a quarter car model and a Kalman filter are used to generate an estimate of the road profile, while positioning the vehicle using inertial measurements and access point signal strength. === <p>Ytterligare forskningsfinansiär: Epiroc Rock Drills AB</p>
author Jakobsson, Erik
author_facet Jakobsson, Erik
author_sort Jakobsson, Erik
title Data-driven Condition Monitoring in Mining Vehicles
title_short Data-driven Condition Monitoring in Mining Vehicles
title_full Data-driven Condition Monitoring in Mining Vehicles
title_fullStr Data-driven Condition Monitoring in Mining Vehicles
title_full_unstemmed Data-driven Condition Monitoring in Mining Vehicles
title_sort data-driven condition monitoring in mining vehicles
publisher Linköpings universitet, Fordonssystem
publishDate 2019
url http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162132
http://nbn-resolving.de/urn:isbn:9789179299729
work_keys_str_mv AT jakobssonerik datadrivenconditionmonitoringinminingvehicles
_version_ 1723965790458216448