Olfactory sensitivity of human subjects for six predator odorants

The purpose of the present study was to determine olfactory detection thresholds in human subjects for a set of six sulfur-containing odorants which are known to be components of mammalian predator odors. Using a threealternative ascending staircase procedure, the olfactory sensitivity of 12 healthy...

Full description

Bibliographic Details
Main Author: Sarrafchi, Amir
Format: Others
Language:English
Published: Linköpings universitet, Institutionen för fysik, kemi och biologi 2012
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77816
Description
Summary:The purpose of the present study was to determine olfactory detection thresholds in human subjects for a set of six sulfur-containing odorants which are known to be components of mammalian predator odors. Using a threealternative ascending staircase procedure, the olfactory sensitivity of 12 healthy adult human subjects, 6 males and 6 females was assessed with 2-propylthietane, 2,2-dimethylthietane, 3-mercapto-3-methylbutan-1-ol, 3-mercapto-3- methylbutyl formate, 3-methyl-1-butanethiol, and methyl-2-phenylethyl sulfide. The results showed that A) all six predator odorants were detected at concentrations below 1 ppb (parts per billion), and one of them (3-mercapto-3-methylbutyl formate) even at a concentration below 1 ppt (parts per trillion), B) structurally similar odorants yielded significantly different threshold values, and C) no significant sex differences were found in olfactory sensitivity with any of the six odorants. The findings obtained from the present study show that human subjects were not generally less sensitive to the predator odorants tested here compared to spider monkeys despite having a markedly lower number of olfactory receptor types. Further, they suggest that humans may be more sensitive to predator odorants compared to a variety of non-predator odorants. One possible explanation for the high olfactory sensitivity observed here is the fact that sulfur compounds typically can be detected at low concentrations. An alternative explanation derives from an evolutionary perspective as our human ancestors were a potential prey of large carnivores and  thus a high olfactory sensitivity for predator odors should be adaptive for humans.