Efterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”

An organization must manage its resource consumption and material flows in order to satisfy the demand of its products as efficiently as possible. Managing of the aforementioned requires a balance between the organizations resources (such as the capability of distribution and production) and the mar...

Full description

Bibliographic Details
Main Authors: Mokhtar, Jonathan, Larsson, Marcus, Westman, Martin
Format: Others
Language:Swedish
Published: Linnéuniversitetet, Institutionen för ekonomistyrning och logistik (ELO) 2014
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35868
id ndltd-UPSALLA1-oai-DiVA.org-lnu-35868
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-lnu-358682014-07-03T05:05:12ZEfterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”sweMokhtar, JonathanLarsson, MarcusWestman, MartinLinnéuniversitetet, Institutionen för ekonomistyrning och logistik (ELO)Linnéuniversitetet, Institutionen för ekonomistyrning och logistik (ELO)Linnéuniversitetet, Institutionen för ekonomistyrning och logistik (ELO)2014Fast Moving Consumer GoodsFMCGobjective forecasting methodTime seriesdemand forecastingFast Moving Consumer GoodsFMCGobjektiv prognostidsserieefterfrågeprognosAn organization must manage its resource consumption and material flows in order to satisfy the demand of its products as efficiently as possible. Managing of the aforementioned requires a balance between the organizations resources (such as the capability of distribution and production) and the market demand. According to Gardner (1990), an estimation of future demand is a necessity for maintaining the balance. An instrument that is used frequently to estimate future demand is demand forecasting. The demand forecasting practice has been thoroughly studied and a plethora of academic contributions exist on the topic. However, a best practice demand forecasting method does not exist for every kind of product. The purpose of this paper is to identify which time series forecasting method that will result in the lowest error rate on fast moving consumer goods. The methods are based on sales data of 18 articles from the company Coca-Cola Enterprises Sverige AB which predominantly sells soft drinks. The majority of the theoretical framework is time series models presented by the authors Stig-Arne Mattsson, Patrik Jonsson and Steven Nahmias. The paper identifies Exponential smoothing with individual input variables as the forecasting method with the lowest error rate. The method gave the lowest possible error rate on over 55 percent of the articles. In addition, the combined error rate of the articles using Exponential smoothing with individual input variables gave the lowest overall error. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35868application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic Fast Moving Consumer Goods
FMCG
objective forecasting method
Time series
demand forecasting
Fast Moving Consumer Goods
FMCG
objektiv prognos
tidsserie
efterfrågeprognos
spellingShingle Fast Moving Consumer Goods
FMCG
objective forecasting method
Time series
demand forecasting
Fast Moving Consumer Goods
FMCG
objektiv prognos
tidsserie
efterfrågeprognos
Mokhtar, Jonathan
Larsson, Marcus
Westman, Martin
Efterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”
description An organization must manage its resource consumption and material flows in order to satisfy the demand of its products as efficiently as possible. Managing of the aforementioned requires a balance between the organizations resources (such as the capability of distribution and production) and the market demand. According to Gardner (1990), an estimation of future demand is a necessity for maintaining the balance. An instrument that is used frequently to estimate future demand is demand forecasting. The demand forecasting practice has been thoroughly studied and a plethora of academic contributions exist on the topic. However, a best practice demand forecasting method does not exist for every kind of product. The purpose of this paper is to identify which time series forecasting method that will result in the lowest error rate on fast moving consumer goods. The methods are based on sales data of 18 articles from the company Coca-Cola Enterprises Sverige AB which predominantly sells soft drinks. The majority of the theoretical framework is time series models presented by the authors Stig-Arne Mattsson, Patrik Jonsson and Steven Nahmias. The paper identifies Exponential smoothing with individual input variables as the forecasting method with the lowest error rate. The method gave the lowest possible error rate on over 55 percent of the articles. In addition, the combined error rate of the articles using Exponential smoothing with individual input variables gave the lowest overall error.
author Mokhtar, Jonathan
Larsson, Marcus
Westman, Martin
author_facet Mokhtar, Jonathan
Larsson, Marcus
Westman, Martin
author_sort Mokhtar, Jonathan
title Efterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”
title_short Efterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”
title_full Efterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”
title_fullStr Efterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”
title_full_unstemmed Efterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”
title_sort efterfrågeprognoser : ”en jämförelse av prognosmodeller med avseende på fmcg-marknaden”
publisher Linnéuniversitetet, Institutionen för ekonomistyrning och logistik (ELO)
publishDate 2014
url http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35868
work_keys_str_mv AT mokhtarjonathan efterfrageprognoserenjamforelseavprognosmodellermedavseendepafmcgmarknaden
AT larssonmarcus efterfrageprognoserenjamforelseavprognosmodellermedavseendepafmcgmarknaden
AT westmanmartin efterfrageprognoserenjamforelseavprognosmodellermedavseendepafmcgmarknaden
_version_ 1716706210834546688