Experimental and numerical studies of intralaminar cracking in high performance composites

The macroscopic failure of composite laminates subjected to tensile increasing load is preceded by initiation and evolution of several microdamage modes. The most common damage mode and the one examined in this thesis is intralaminar cracking in layers. Due to this kind of microdamage the laminate u...

Full description

Bibliographic Details
Main Author: Loukil, Mohamed Sahbi
Format: Doctoral Thesis
Language:English
Published: Luleå tekniska universitet, Materialvetenskap 2013
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26501
http://nbn-resolving.de/urn:isbn:978-91-7439-718-5
http://nbn-resolving.de/urn:isbn:978-91-7439-719-2
id ndltd-UPSALLA1-oai-DiVA.org-ltu-26501
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Composite Science and Engineering
Kompositmaterial och -teknik
spellingShingle Composite Science and Engineering
Kompositmaterial och -teknik
Loukil, Mohamed Sahbi
Experimental and numerical studies of intralaminar cracking in high performance composites
description The macroscopic failure of composite laminates subjected to tensile increasing load is preceded by initiation and evolution of several microdamage modes. The most common damage mode and the one examined in this thesis is intralaminar cracking in layers. Due to this kind of microdamage the laminate undergoes stiffness reduction when loaded in tension. For example, the elastic modulus in the loading direction and the corresponding Poisson’s ratio will decrease.The degradation of the elastic properties of these materials is caused by reduced stress in the damaged layer which is mainly due to two parameters: crack opening displacement (COD) and crack sliding displacement (CSD). At fixed applied load these parameters depend on the properties of the damaged and surrounding layers, on layer orientation and on thickness. When the number of cracks per unit length is high (high crack density in the layer) the COD and CSD are reduced because of to crack interaction.The main objective of the first paper is to investigate the effect of crack interaction on COD using FEM and to describe the identified dependence on crack density in a simple and accurate form by introducing an interaction function dependent on crack density. This interaction function together with COD of non-interactive crack gives accurate predictions of the damaged laminate properties. The application of this function to more complex laminate lay-ups is demonstrated. All these calculations are performed assuming that cracks are equidistant. However, the crack distribution in the damaged layer is very non-uniform, especially in the initial stage of multiple cracking. In the second paper, the earlier developed model for general symmetric laminates is generalized to account for non-uniform crack distribution. This model is used to calculate the axial modulus of cross-ply laminates with cracks in internal and surface layers. In parametric analysis the COD and CSD are calculated using FEM, considering the smallest versus the average crack spacing ratio as non-uniformity parameter. It is shown that assuming uniform distribution we obtain lower bond to elastic modulus. A “double-periodic” approach presented to calculate the COD of a crack in a non-uniform case as the average of two solutions for periodic crack systems is very accurate for cracks in internal layers, whereas for high crack density in surface layers it underestimates the modulus reduction.In the third paper, the thermo-elastic constants were calculated using shear lag models and variational models in a general calculation approach (GLOB-LOC) for symmetric laminates with transverse cracks in 90° layer. The comparison of these two models with FEM was presented for cross-ply and quasi-isotropic laminates.Using FEM, we assume linear elastic material with ideal crack geometry. Fiber bridging over the crack surface is possible which can affect COD and CSD. The only correct way to validate these assumptions is through experiments.The main objective of the fourth and the fifth paper is to measure these parameters for different laminate lay-ups in this way providing models with valuable information for validation of used assumptions and for defining limits of their application. In particular, the displacement field on the edge of a [90/0]s and [903/0]s carbon fiber/epoxy laminates specimens with multiple intralaminar cracks in the surface layer is studied. The specimen full-field displacement measurement is carried out using ESPI (Electronic Speckle Pattern Interferometry). === Godkänd; 2013; 20130828 (mohlou); Tillkännagivande disputation 2013-09-11 Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Mohamed Sahbi Loukil Ämne: Polymera konstruktionsmaterial/Polymeric Composite Materials Avhandling: Experimental and Numerical Studies of Intralaminar Cracking in High Performance Composites Opponent: Professor Constantinos Soutis, School of Mechanical, Aerospace & Civil Engineering, University of Manchester, UK Ordförande: Professor Janis Varna, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Tid: Fredag den 4 oktober 2013, kl 09.00 Plats: E231, Luleå tekniska universitet
author Loukil, Mohamed Sahbi
author_facet Loukil, Mohamed Sahbi
author_sort Loukil, Mohamed Sahbi
title Experimental and numerical studies of intralaminar cracking in high performance composites
title_short Experimental and numerical studies of intralaminar cracking in high performance composites
title_full Experimental and numerical studies of intralaminar cracking in high performance composites
title_fullStr Experimental and numerical studies of intralaminar cracking in high performance composites
title_full_unstemmed Experimental and numerical studies of intralaminar cracking in high performance composites
title_sort experimental and numerical studies of intralaminar cracking in high performance composites
publisher Luleå tekniska universitet, Materialvetenskap
publishDate 2013
url http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26501
http://nbn-resolving.de/urn:isbn:978-91-7439-718-5
http://nbn-resolving.de/urn:isbn:978-91-7439-719-2
work_keys_str_mv AT loukilmohamedsahbi experimentalandnumericalstudiesofintralaminarcrackinginhighperformancecomposites
_version_ 1718562999676960768
spelling ndltd-UPSALLA1-oai-DiVA.org-ltu-265012017-11-25T05:38:43ZExperimental and numerical studies of intralaminar cracking in high performance compositesengLoukil, Mohamed SahbiLuleå tekniska universitet, MaterialvetenskapLuleå2013Composite Science and EngineeringKompositmaterial och -teknikThe macroscopic failure of composite laminates subjected to tensile increasing load is preceded by initiation and evolution of several microdamage modes. The most common damage mode and the one examined in this thesis is intralaminar cracking in layers. Due to this kind of microdamage the laminate undergoes stiffness reduction when loaded in tension. For example, the elastic modulus in the loading direction and the corresponding Poisson’s ratio will decrease.The degradation of the elastic properties of these materials is caused by reduced stress in the damaged layer which is mainly due to two parameters: crack opening displacement (COD) and crack sliding displacement (CSD). At fixed applied load these parameters depend on the properties of the damaged and surrounding layers, on layer orientation and on thickness. When the number of cracks per unit length is high (high crack density in the layer) the COD and CSD are reduced because of to crack interaction.The main objective of the first paper is to investigate the effect of crack interaction on COD using FEM and to describe the identified dependence on crack density in a simple and accurate form by introducing an interaction function dependent on crack density. This interaction function together with COD of non-interactive crack gives accurate predictions of the damaged laminate properties. The application of this function to more complex laminate lay-ups is demonstrated. All these calculations are performed assuming that cracks are equidistant. However, the crack distribution in the damaged layer is very non-uniform, especially in the initial stage of multiple cracking. In the second paper, the earlier developed model for general symmetric laminates is generalized to account for non-uniform crack distribution. This model is used to calculate the axial modulus of cross-ply laminates with cracks in internal and surface layers. In parametric analysis the COD and CSD are calculated using FEM, considering the smallest versus the average crack spacing ratio as non-uniformity parameter. It is shown that assuming uniform distribution we obtain lower bond to elastic modulus. A “double-periodic” approach presented to calculate the COD of a crack in a non-uniform case as the average of two solutions for periodic crack systems is very accurate for cracks in internal layers, whereas for high crack density in surface layers it underestimates the modulus reduction.In the third paper, the thermo-elastic constants were calculated using shear lag models and variational models in a general calculation approach (GLOB-LOC) for symmetric laminates with transverse cracks in 90° layer. The comparison of these two models with FEM was presented for cross-ply and quasi-isotropic laminates.Using FEM, we assume linear elastic material with ideal crack geometry. Fiber bridging over the crack surface is possible which can affect COD and CSD. The only correct way to validate these assumptions is through experiments.The main objective of the fourth and the fifth paper is to measure these parameters for different laminate lay-ups in this way providing models with valuable information for validation of used assumptions and for defining limits of their application. In particular, the displacement field on the edge of a [90/0]s and [903/0]s carbon fiber/epoxy laminates specimens with multiple intralaminar cracks in the surface layer is studied. The specimen full-field displacement measurement is carried out using ESPI (Electronic Speckle Pattern Interferometry). Godkänd; 2013; 20130828 (mohlou); Tillkännagivande disputation 2013-09-11 Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Mohamed Sahbi Loukil Ämne: Polymera konstruktionsmaterial/Polymeric Composite Materials Avhandling: Experimental and Numerical Studies of Intralaminar Cracking in High Performance Composites Opponent: Professor Constantinos Soutis, School of Mechanical, Aerospace & Civil Engineering, University of Manchester, UK Ordförande: Professor Janis Varna, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Tid: Fredag den 4 oktober 2013, kl 09.00 Plats: E231, Luleå tekniska universitetDoctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26501urn:isbn:978-91-7439-718-5urn:isbn:978-91-7439-719-2Local e8cfa49c-07f2-42c0-98a6-480ad1905985Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, 1402-1544 ; application/pdfinfo:eu-repo/semantics/openAccess