Minimal Surfaces in Sub-Riemannian Geometries with Applications to Perceptual Completion

A preliminary study of the papers ``A Cortical Based Model of Perceptual Completion in the Roto-Translation Space'' and ``Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model'' is done. The first one, written by Citti and S...

Full description

Bibliographic Details
Main Author: Viddal, Per Martin
Format: Others
Language:English
Published: Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag 2009
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9934
Description
Summary:A preliminary study of the papers ``A Cortical Based Model of Perceptual Completion in the Roto-Translation Space'' and ``Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model'' is done. The first one, written by Citti and Sarti, describe a perceptual completion model where a part of the visual cortex is modelled using a sub-Riemannian geometry on the Lie group SE(2). The second one, written by Hladky and Pauls, describe a model which completes the interior of a circular hole by spanning the lifted boundary by a minimal surface, presuming such a surface exists. These surfaces are solutions of occluded visual data as described by Citti and Sarti. Based on the models above, we propose a new model. The lifted boundary of an arbitrary hole is spanned by a surface consisting of geodesics between points with matching Dirichlet boundary values. All the three models are based on the sub-Riemannian geometry for the roto-translational space introduced by Citti and Sarti. The basic theory of sub-Riemannian geometries, including the derivation of some flows and operators in this degenerate space, is described. The models are implemented, and numerical results are presented.