Water-Metal Surfaces : Insights from core-level spectroscopy and density functional theory

Computational methods are combined with synchrotron-based techniques to analyze the structure and bonding of water and water plus hydroxyl at metal surfaces under UHV and at near-ambient conditions. Water-metal interaction plays a crucial role in a multitude of cosmic, atmospheric and biological phe...

Full description

Bibliographic Details
Main Author: Schiros, Theanne
Format: Doctoral Thesis
Language:English
Published: Stockholms universitet, Fysikum 2008
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7435
http://nbn-resolving.de/urn:isbn:978-91-7155-607-3
Description
Summary:Computational methods are combined with synchrotron-based techniques to analyze the structure and bonding of water and water plus hydroxyl at metal surfaces under UHV and at near-ambient conditions. Water-metal interaction plays a crucial role in a multitude of cosmic, atmospheric and biological phenomena as well as heterogeneous catalysis, electrochemistry and corrosion. A spotlight of renewed interest has recently been cast on water-metal systems due to their relevance for surface chemical reactions related to the production and utilization of hydrogen as a clean energy carrier. In particular, H2O and OH are essential reaction intermediates in the renewable production of hydrogen from sunlight and water and in fuel cell electrocatalysis. Fuel cells are considered one of the most promising power generation technologies for a sustainable energy future. A mechanistic understanding of the oxygen reduction reaction (ORR) pathway, including the role of electronic and geometric structure of the catalyst, is essential to the design of more efficient fuel cell catalysts. This is intimately connected to fundamental factors that affect the ability to form water-metal bonds as well as the site occupation and orientation of the adsorbed H2O and OH at active metal surfaces. Key relationships related to critical issues in the fuel cell reaction are illuminated by the synergy of theory and experiment in this thesis. We emerge with a detailed understanding of the structure of the water-metal interface and the factors that rule the wettability of a metal surface, including geometric and electronic structure effects and the influence of coadsorbed species. We show that the preferred microscopic orientation of the water monolayer has consequences for macroscopic properties, and reveal the origin of the hydrophobic water layer. Finally, we identify a cooperativity effect that drives the stability of the mixed water/hydroxyl layer at metal surfaces, an important ORR intermediate.