The effects of forestry on stream ecological integrity

This study investigates the effects of forestry on leaf litter decomposition in small forest streams. Riparian forest, that is the land closest to the stream, maintain shading, water temperature and energy supply through litter fall. If the riparian zone is deforested, many riparian functions import...

Full description

Bibliographic Details
Main Author: Bremer, Edith
Format: Others
Language:English
Published: Umeå universitet, Institutionen för ekologi, miljö och geovetenskap 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160127
Description
Summary:This study investigates the effects of forestry on leaf litter decomposition in small forest streams. Riparian forest, that is the land closest to the stream, maintain shading, water temperature and energy supply through litter fall. If the riparian zone is deforested, many riparian functions important for the integrity of the stream ecology, hydrology and biogeochemistry can be lost or modified. Leaf litter decomposition can be used as an integrated measure of the physical and biological changes following forestry perturbations.  This study was conducted in 11 northern and 12 southern Swedish streams to address; 1) How is leaf litter decomposition in small streams affected by forestry by measuring leaf litter decomposition in streams with different buffer widths, and; 2) How other environmental variables, such as  stream bottom substrate, canopy openness, water temperature and stream velocity affected leaf litter decomposition. Buffer width had no effect on decomposition. Temperature and proportion organic bottom substrate had respectively positive and negative trends with decomposition in the southern Swedish sites which suggests the importance of forestry targeting these riparian functions especially when managing small streams. At the northern sites, velocity showed a positive, and temperature a negative trend with leaf litter decomposition but none of these were significant. It is possible that the extraordinarily warm and dry weather before and during the study was conducted affected aquatic organisms to the degree that decomposition was inhibited, and most trends became too small to detect or that buffer width is less important in a warmer climate.