Genomics, physiology and applications of cold tolerant acidophiles

Psychrotolerant acidophiles have gained increasing interest because of their importance in biomining operations in environments where the temperature falls well below 10°C during large parts of the year. Acidithiobacillus ferrivorans is the only characterized acidophile with the ability to live a ps...

Full description

Bibliographic Details
Main Author: Liljeqvist, Maria
Format: Doctoral Thesis
Language:English
Published: Umeå universitet, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet) 2012
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-60550
http://nbn-resolving.de/urn:isbn:978-91-7459-472-0
id ndltd-UPSALLA1-oai-DiVA.org-umu-60550
record_format oai_dc
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
description Psychrotolerant acidophiles have gained increasing interest because of their importance in biomining operations in environments where the temperature falls well below 10°C during large parts of the year. Acidithiobacillus ferrivorans is the only characterized acidophile with the ability to live a psychrotrophic lifestyle and is able to oxidize ferrous iron and inorganic sulfur compounds at low temperature. The A. ferrivorans SS3 genome sequence mirrors its low temperature chemolithotrophic lifestyle and indicates ecological flexibility. Two enzyme systems for the synthesis of the protective molecule trehalose as well as multiple cold shock proteins suggest its psychrotolerance. In addition to genes coding for ferrous iron and inorganic sulfur compound oxidation enzymes, candidate genes for molecular hydrogen utilization were identified. Also, A. ferrivorans SS3 was suggested to have the ability to switch between nitrogen fixation and nitrogen uptake. Characterization of ferrous iron and inorganic sulfur compound oxidation during low temperature growth showed that both substrates were efficiently oxidized and revealed the potential of using ferric iron as an alternative electron acceptor. Gene transcript analyses also revealed constitutive expression of genes involved in ferrous iron oxidation and their rapid increase in expression when ferrous iron became available. Growth experiments further suggested ferrous iron was preferred over inorganic sulfur compounds during bioleaching. This phenomenon was especially evident during A. ferrivorans-mediated bioleaching of chalcopyrite as sulfur accumulated and eventually inhibited further leaching. A potential way to alleviate this problem is addition of low temperature, obligate inorganic sulfur compound oxidizing acidophiles. Although, these microorganisms have not been identified, analysis of a cold, acidic biofilm from Kristineberg mine suggested additional psychrotolerant inorganic sulfur compound oxidation oxidizers might be present. Psychrotolerant acidophiles from Kristineberg mine have also been demonstrated to remove inorganic sulfur compounds from mining process water at in situ temperatures. This use of indigenous microorganisms for removal of environmental pollutants is a big step towards greener mining. === Syra-älskande bakterier, s.k. acidofiler, är mikroorganismer som lever i ofta metallrika miljöer med väldigt lågt pH. Dom används industriellt i en process kallad biolakning där metaller utvinns från mineral genom den katalyserande förmågan hos dessa mikroorganismer. Acidithiobacillus ferrivorans är en nyligen karaktäriserad acidofil som oxiderar järn- och svavelföreningar vid låga temperaturer, den första och hittills enda av sitt slag. Den har visat sig väldigt användbar vid biolakning i kalla miljöer, såsom i Sveriges norra delar där medeltemperaturen sjunker under 10°C under stora delar av året. En inblick i den genetiska potentialen hos denna mikroorganism avspeglar dess livsstil samt avslöjar en bred ekologisk flexibilitet. Ett flertal gener kan sammankopplas med dess förmåga att överleva vid låga temperaturer, såsom gener för tillverkning av s.k. köldchockproteiner. Vid sidan om gener som kodar för järn- och svaveloxiderande enzymer återfinns potentialen att oxidera vätgas. A. ferrivorans verkar även kunna växla mellan att fixera kvävgas och ta upp kvävejoner ifrån sin omgivande miljö, beroende på den tillgängliga kvävekällan. Vidare karaktärisering av järn- och svaveloxidering vid låga temperaturer visade att båda typer av substrat kan oxideras effektivt men avslöjar även att svaveloxidering kan sammankopplas med reducering av järn istället för den traditionella syrgasen. Analys av genuttryck visade att gener för järnoxidering var kontinuerligt uttryckta och att en signifikant uppreglering sker så snart järn introduceras. Det visade sig även att järn verkar vara det föredragna substratet vid biolakning. Detta fenomen är speciellt uppenbart under biolakningsexperiment med A. ferrivorans då elementärt svavel succesivt ackumuleras och så småningom hindrar vidare frigörelse av metaller. En lösning på detta problem skulle kunna vara att tillsätta köldtoleranta mikroorganismer med enbart svaveloxiderande förmåga. Idag finns inte några sådana bakterier beskrivna, men analys utav en kontinuerligt kyld och sur biofilm isolerad ifrån Kristinebergsgruvan indikerar emellertid förekomsten av svaveloxiderande bakterier. Köldtoleranta acidofiler från Kristinebergsgruvan har även visat sig användbara vid industriellt avlägsnande av svavelföreningar från gruvindustriellt processvatten. Att använda naturligt förekommande mikroorganismer vid rening av miljöfarligt avfall är ett stort steg i riktning mot en grönare gruvindustri.
author Liljeqvist, Maria
spellingShingle Liljeqvist, Maria
Genomics, physiology and applications of cold tolerant acidophiles
author_facet Liljeqvist, Maria
author_sort Liljeqvist, Maria
title Genomics, physiology and applications of cold tolerant acidophiles
title_short Genomics, physiology and applications of cold tolerant acidophiles
title_full Genomics, physiology and applications of cold tolerant acidophiles
title_fullStr Genomics, physiology and applications of cold tolerant acidophiles
title_full_unstemmed Genomics, physiology and applications of cold tolerant acidophiles
title_sort genomics, physiology and applications of cold tolerant acidophiles
publisher Umeå universitet, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet)
publishDate 2012
url http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-60550
http://nbn-resolving.de/urn:isbn:978-91-7459-472-0
work_keys_str_mv AT liljeqvistmaria genomicsphysiologyandapplicationsofcoldtolerantacidophiles
_version_ 1716510886207684608
spelling ndltd-UPSALLA1-oai-DiVA.org-umu-605502013-01-08T13:09:48ZGenomics, physiology and applications of cold tolerant acidophilesengLiljeqvist, MariaUmeå universitet, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet)Umeå : Umeå universitet2012Psychrotolerant acidophiles have gained increasing interest because of their importance in biomining operations in environments where the temperature falls well below 10°C during large parts of the year. Acidithiobacillus ferrivorans is the only characterized acidophile with the ability to live a psychrotrophic lifestyle and is able to oxidize ferrous iron and inorganic sulfur compounds at low temperature. The A. ferrivorans SS3 genome sequence mirrors its low temperature chemolithotrophic lifestyle and indicates ecological flexibility. Two enzyme systems for the synthesis of the protective molecule trehalose as well as multiple cold shock proteins suggest its psychrotolerance. In addition to genes coding for ferrous iron and inorganic sulfur compound oxidation enzymes, candidate genes for molecular hydrogen utilization were identified. Also, A. ferrivorans SS3 was suggested to have the ability to switch between nitrogen fixation and nitrogen uptake. Characterization of ferrous iron and inorganic sulfur compound oxidation during low temperature growth showed that both substrates were efficiently oxidized and revealed the potential of using ferric iron as an alternative electron acceptor. Gene transcript analyses also revealed constitutive expression of genes involved in ferrous iron oxidation and their rapid increase in expression when ferrous iron became available. Growth experiments further suggested ferrous iron was preferred over inorganic sulfur compounds during bioleaching. This phenomenon was especially evident during A. ferrivorans-mediated bioleaching of chalcopyrite as sulfur accumulated and eventually inhibited further leaching. A potential way to alleviate this problem is addition of low temperature, obligate inorganic sulfur compound oxidizing acidophiles. Although, these microorganisms have not been identified, analysis of a cold, acidic biofilm from Kristineberg mine suggested additional psychrotolerant inorganic sulfur compound oxidation oxidizers might be present. Psychrotolerant acidophiles from Kristineberg mine have also been demonstrated to remove inorganic sulfur compounds from mining process water at in situ temperatures. This use of indigenous microorganisms for removal of environmental pollutants is a big step towards greener mining. Syra-älskande bakterier, s.k. acidofiler, är mikroorganismer som lever i ofta metallrika miljöer med väldigt lågt pH. Dom används industriellt i en process kallad biolakning där metaller utvinns från mineral genom den katalyserande förmågan hos dessa mikroorganismer. Acidithiobacillus ferrivorans är en nyligen karaktäriserad acidofil som oxiderar järn- och svavelföreningar vid låga temperaturer, den första och hittills enda av sitt slag. Den har visat sig väldigt användbar vid biolakning i kalla miljöer, såsom i Sveriges norra delar där medeltemperaturen sjunker under 10°C under stora delar av året. En inblick i den genetiska potentialen hos denna mikroorganism avspeglar dess livsstil samt avslöjar en bred ekologisk flexibilitet. Ett flertal gener kan sammankopplas med dess förmåga att överleva vid låga temperaturer, såsom gener för tillverkning av s.k. köldchockproteiner. Vid sidan om gener som kodar för järn- och svaveloxiderande enzymer återfinns potentialen att oxidera vätgas. A. ferrivorans verkar även kunna växla mellan att fixera kvävgas och ta upp kvävejoner ifrån sin omgivande miljö, beroende på den tillgängliga kvävekällan. Vidare karaktärisering av järn- och svaveloxidering vid låga temperaturer visade att båda typer av substrat kan oxideras effektivt men avslöjar även att svaveloxidering kan sammankopplas med reducering av järn istället för den traditionella syrgasen. Analys av genuttryck visade att gener för järnoxidering var kontinuerligt uttryckta och att en signifikant uppreglering sker så snart järn introduceras. Det visade sig även att järn verkar vara det föredragna substratet vid biolakning. Detta fenomen är speciellt uppenbart under biolakningsexperiment med A. ferrivorans då elementärt svavel succesivt ackumuleras och så småningom hindrar vidare frigörelse av metaller. En lösning på detta problem skulle kunna vara att tillsätta köldtoleranta mikroorganismer med enbart svaveloxiderande förmåga. Idag finns inte några sådana bakterier beskrivna, men analys utav en kontinuerligt kyld och sur biofilm isolerad ifrån Kristinebergsgruvan indikerar emellertid förekomsten av svaveloxiderande bakterier. Köldtoleranta acidofiler från Kristinebergsgruvan har även visat sig användbara vid industriellt avlägsnande av svavelföreningar från gruvindustriellt processvatten. Att använda naturligt förekommande mikroorganismer vid rening av miljöfarligt avfall är ett stort steg i riktning mot en grönare gruvindustri. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-60550urn:isbn:978-91-7459-472-0application/pdfinfo:eu-repo/semantics/openAccess