Artificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : Potential och utmaningar vid implementering av artificiell intelligens i Stockholms pendeltågstrafik
Well-functioning and competitive transport systems are of great importance for Sweden’s economic growth. The railway system has a central role in this matter. Furthermore, the Swedish railway system plays an important part in achieving international and national goals, such as Agenda 2030 and the Sw...
Main Authors: | , |
---|---|
Format: | Others |
Language: | Swedish |
Published: |
Uppsala universitet, Avdelningen för visuell information och interaktion
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444625 |
id |
ndltd-UPSALLA1-oai-DiVA.org-uu-444625 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-uu-4446252021-06-10T05:24:37ZArtificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : Potential och utmaningar vid implementering av artificiell intelligens i Stockholms pendeltågstrafiksweLindfors, KajsaBäckman, AlmaUppsala universitet, Avdelningen för visuell information och interaktionUppsala universitet, Avdelningen för visuell information och interaktion2021artificiell intelligensaijärnvägpendeltågtrafikledningunderhållComputer SciencesDatavetenskap (datalogi)Well-functioning and competitive transport systems are of great importance for Sweden’s economic growth. The railway system has a central role in this matter. Furthermore, the Swedish railway system plays an important part in achieving international and national goals, such as Agenda 2030 and the Swedish transport policy goals. The railway industry is currently being digitized to a further extent. The railway is becoming increasingly connected and data is generated and collected continuously. This study aims to explore the potential of artificial intelligence (AI), with a focus on machine learning and optimization, on the Swedish railway system, to achieve strategic goals. The focus is mainly on sustainability and economic aspects. Potential challenges and how to overcome them are also studied. To achieve the purpose of the study a case study of Stockholm’s commuter rail has been used. To explore the aim, a literature study together with interviews has been conducted. The literature study consists of a background explanation of the railway industry and Stockholm’s commuter rail, as well as how AI applications can be implemented. The interviews have been held with key players in the Stockholm commuter rail industry, along with experts and scientists. These have given valuable information regarding their thoughts on the potential of AI in the railway industry. The result shows that AI has the potential to improve maintenance and traffic management and thereby create a more attractive and efficient operation of the Stockholm commuter rail industry. Further, this may lead to achieving strategic goals: international, national and commuter rail related goals. Due to the limitation of this thesis, it is difficult to draw conclusions based on the results regarding specific methods and algorithms that would be best suited for applications in the railway. Several challenges were identified for using AI to achieve strategic goals. To overcome these challenges, a combination of various actions is needed. Based on the results it is clarified that the industry is permeated of willpower, but that sufficient investments and initiatives are still largely lacking to overcome the challenges that exist in Stockholm’s commuter rail traffic. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444625UPTEC STS, 1650-8319 ; 21021application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
Swedish |
format |
Others
|
sources |
NDLTD |
topic |
artificiell intelligens ai järnväg pendeltåg trafikledning underhåll Computer Sciences Datavetenskap (datalogi) |
spellingShingle |
artificiell intelligens ai järnväg pendeltåg trafikledning underhåll Computer Sciences Datavetenskap (datalogi) Lindfors, Kajsa Bäckman, Alma Artificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : Potential och utmaningar vid implementering av artificiell intelligens i Stockholms pendeltågstrafik |
description |
Well-functioning and competitive transport systems are of great importance for Sweden’s economic growth. The railway system has a central role in this matter. Furthermore, the Swedish railway system plays an important part in achieving international and national goals, such as Agenda 2030 and the Swedish transport policy goals. The railway industry is currently being digitized to a further extent. The railway is becoming increasingly connected and data is generated and collected continuously. This study aims to explore the potential of artificial intelligence (AI), with a focus on machine learning and optimization, on the Swedish railway system, to achieve strategic goals. The focus is mainly on sustainability and economic aspects. Potential challenges and how to overcome them are also studied. To achieve the purpose of the study a case study of Stockholm’s commuter rail has been used. To explore the aim, a literature study together with interviews has been conducted. The literature study consists of a background explanation of the railway industry and Stockholm’s commuter rail, as well as how AI applications can be implemented. The interviews have been held with key players in the Stockholm commuter rail industry, along with experts and scientists. These have given valuable information regarding their thoughts on the potential of AI in the railway industry. The result shows that AI has the potential to improve maintenance and traffic management and thereby create a more attractive and efficient operation of the Stockholm commuter rail industry. Further, this may lead to achieving strategic goals: international, national and commuter rail related goals. Due to the limitation of this thesis, it is difficult to draw conclusions based on the results regarding specific methods and algorithms that would be best suited for applications in the railway. Several challenges were identified for using AI to achieve strategic goals. To overcome these challenges, a combination of various actions is needed. Based on the results it is clarified that the industry is permeated of willpower, but that sufficient investments and initiatives are still largely lacking to overcome the challenges that exist in Stockholm’s commuter rail traffic. |
author |
Lindfors, Kajsa Bäckman, Alma |
author_facet |
Lindfors, Kajsa Bäckman, Alma |
author_sort |
Lindfors, Kajsa |
title |
Artificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : Potential och utmaningar vid implementering av artificiell intelligens i Stockholms pendeltågstrafik |
title_short |
Artificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : Potential och utmaningar vid implementering av artificiell intelligens i Stockholms pendeltågstrafik |
title_full |
Artificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : Potential och utmaningar vid implementering av artificiell intelligens i Stockholms pendeltågstrafik |
title_fullStr |
Artificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : Potential och utmaningar vid implementering av artificiell intelligens i Stockholms pendeltågstrafik |
title_full_unstemmed |
Artificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : Potential och utmaningar vid implementering av artificiell intelligens i Stockholms pendeltågstrafik |
title_sort |
artificiell intelligens för att uppnå strategiska mål inom järnvägsbranschen : potential och utmaningar vid implementering av artificiell intelligens i stockholms pendeltågstrafik |
publisher |
Uppsala universitet, Avdelningen för visuell information och interaktion |
publishDate |
2021 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444625 |
work_keys_str_mv |
AT lindforskajsa artificiellintelligensforattuppnastrategiskamalinomjarnvagsbranschenpotentialochutmaningarvidimplementeringavartificiellintelligensistockholmspendeltagstrafik AT backmanalma artificiellintelligensforattuppnastrategiskamalinomjarnvagsbranschenpotentialochutmaningarvidimplementeringavartificiellintelligensistockholmspendeltagstrafik |
_version_ |
1719409848302436352 |