Study of solution-based Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite deposition with scalable technology for solar cell production : Characterization of optical properties and function of the solar cell

Climate change is one of the greatest challenges of the 21st century and is the reason for several environmental changes on earth. One reason behind climate change includes the rise ingreenhouse gas emissions in the atmosphere due to the burning of coal, gas and oil, i.e. fossil fuels. Fossil fuels...

Full description

Bibliographic Details
Main Author: Laskar, Tasnim
Format: Others
Language:English
Published: Uppsala universitet, Fysikalisk kemi 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-457242
id ndltd-UPSALLA1-oai-DiVA.org-uu-457242
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-4572422021-10-28T05:31:22ZStudy of solution-based Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite deposition with scalable technology for solar cell production : Characterization of optical properties and function of the solar cellengLaskar, TasnimUppsala universitet, Fysikalisk kemi2021Physical ChemistryFysikalisk kemiClimate change is one of the greatest challenges of the 21st century and is the reason for several environmental changes on earth. One reason behind climate change includes the rise ingreenhouse gas emissions in the atmosphere due to the burning of coal, gas and oil, i.e. fossil fuels. Fossil fuels are currently the world’s primary source of energy and alternative solutions are there for necessary to mitigate climate change, for example by utilizing solar cells. Perovskite solar cells have gain a lot of attention due to its rapid improvement in power conversion efficiency. In parallel with the advances in performance and stability, the challenges of commercialization have arisen. Therefore scalable technology is required to facilitate for large-area fabrication as well as a quality improvement in the perovskite film. The purpose of this project was to characterize the optical properties and functions of the perovskite solar cell when using the precursor solution of Cs0.1FA0.9Pb(I0.9Br0.1)3 for semi-upscaled technique. Additionally, this project investigated different elements in the slot-die coater process to optimize the performance of the solar cell, including the fabrication process of the precursor solution, the size of the substrates and to optimize the functionality of the electron transport layer. Four different trials were conducted in this study using a solution-based technique from  Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite powder while varying different parameters in the cell design and geometric shapes of the substrates. These trials were compared to a reference trial using Cs0.1FA0.9PbI3 through solar cell characterization and material characterization, including current-voltage measurements, incident photon-to-current efficiency, X-ray diffraction, UV/vis/NIR spectrophotometry and scanning electron microscopy. The results show that the power conversion efficiency increased when adding bromide into the perovskite structure. Furthermore, a shift in the band gap was observed during the material characterization. Trial 4 consisted of using SnO2 as the electron transport layer, developing a powder perovskite and adding a 2D additive layer to the cell design, displayed the best performance. In conclusion, the addition of bromide in Cs0.1FA0.9Pb(I0.9Br0.1)3 did increase the performance of the solar cells and the band gap of the perovskite solar cells was tunable.  Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-457242UPTEC F, 1401-5757 ; 21065application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Physical Chemistry
Fysikalisk kemi
spellingShingle Physical Chemistry
Fysikalisk kemi
Laskar, Tasnim
Study of solution-based Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite deposition with scalable technology for solar cell production : Characterization of optical properties and function of the solar cell
description Climate change is one of the greatest challenges of the 21st century and is the reason for several environmental changes on earth. One reason behind climate change includes the rise ingreenhouse gas emissions in the atmosphere due to the burning of coal, gas and oil, i.e. fossil fuels. Fossil fuels are currently the world’s primary source of energy and alternative solutions are there for necessary to mitigate climate change, for example by utilizing solar cells. Perovskite solar cells have gain a lot of attention due to its rapid improvement in power conversion efficiency. In parallel with the advances in performance and stability, the challenges of commercialization have arisen. Therefore scalable technology is required to facilitate for large-area fabrication as well as a quality improvement in the perovskite film. The purpose of this project was to characterize the optical properties and functions of the perovskite solar cell when using the precursor solution of Cs0.1FA0.9Pb(I0.9Br0.1)3 for semi-upscaled technique. Additionally, this project investigated different elements in the slot-die coater process to optimize the performance of the solar cell, including the fabrication process of the precursor solution, the size of the substrates and to optimize the functionality of the electron transport layer. Four different trials were conducted in this study using a solution-based technique from  Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite powder while varying different parameters in the cell design and geometric shapes of the substrates. These trials were compared to a reference trial using Cs0.1FA0.9PbI3 through solar cell characterization and material characterization, including current-voltage measurements, incident photon-to-current efficiency, X-ray diffraction, UV/vis/NIR spectrophotometry and scanning electron microscopy. The results show that the power conversion efficiency increased when adding bromide into the perovskite structure. Furthermore, a shift in the band gap was observed during the material characterization. Trial 4 consisted of using SnO2 as the electron transport layer, developing a powder perovskite and adding a 2D additive layer to the cell design, displayed the best performance. In conclusion, the addition of bromide in Cs0.1FA0.9Pb(I0.9Br0.1)3 did increase the performance of the solar cells and the band gap of the perovskite solar cells was tunable. 
author Laskar, Tasnim
author_facet Laskar, Tasnim
author_sort Laskar, Tasnim
title Study of solution-based Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite deposition with scalable technology for solar cell production : Characterization of optical properties and function of the solar cell
title_short Study of solution-based Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite deposition with scalable technology for solar cell production : Characterization of optical properties and function of the solar cell
title_full Study of solution-based Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite deposition with scalable technology for solar cell production : Characterization of optical properties and function of the solar cell
title_fullStr Study of solution-based Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite deposition with scalable technology for solar cell production : Characterization of optical properties and function of the solar cell
title_full_unstemmed Study of solution-based Cs0.1FA0.9Pb(I0.9Br0.1)3 perovskite deposition with scalable technology for solar cell production : Characterization of optical properties and function of the solar cell
title_sort study of solution-based cs0.1fa0.9pb(i0.9br0.1)3 perovskite deposition with scalable technology for solar cell production : characterization of optical properties and function of the solar cell
publisher Uppsala universitet, Fysikalisk kemi
publishDate 2021
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-457242
work_keys_str_mv AT laskartasnim studyofsolutionbasedcs01fa09pbi09br013perovskitedepositionwithscalabletechnologyforsolarcellproductioncharacterizationofopticalpropertiesandfunctionofthesolarcell
_version_ 1719491474816499712