Inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines

<p>Ethiopian mustard (<i>Brassica carinata</i> A. Braun) or gomenzer is an oilseed crop that is well adapted to the highlands of Ethiopia. Evaluation of the local germplasm has resulted in the registration of high yielding cultivars, such as Dodolla and S-67. The oil of gomenzer co...

Full description

Bibliographic Details
Main Author: Alemaw, Getinet
Other Authors: Devine, Malcolm
Format: Others
Language:en
Published: University of Saskatchewan 1996
Subjects:
Online Access:http://library.usask.ca/theses/available/etd-10212004-000353
id ndltd-USASK-oai-usask.ca-etd-10212004-000353
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic crop science
crop development
plant genetics
Ethiopian mustard
oilseed
spellingShingle crop science
crop development
plant genetics
Ethiopian mustard
oilseed
Alemaw, Getinet
Inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines
description <p>Ethiopian mustard (<i>Brassica carinata</i> A. Braun) or gomenzer is an oilseed crop that is well adapted to the highlands of Ethiopia. Evaluation of the local germplasm has resulted in the registration of high yielding cultivars, such as Dodolla and S-67. The oil of gomenzer contains about 40% erucic acid and the meal is high in glucosinolates. The objective of this research was to study the inheritance of erucic acid content in gomenzer and to introgress genes for the non2-propenyl glucosinolate trait from <i>B. napus</i> and <i>B. juncea</i>. The erucic acid content of F<sub>1</sub> seed from reciprocal crosses between the high erucic acid cultivars Dodolla and S-67 and zero erucic acid line C90-14 was intermediate between the parents indicating that erucic acid content in B. carinata was controlled by two nondominant genes with two alleles acting in an additive manner. Backcross F<sub>1</sub> seed derived from the backcross to the low erucic acid parent fell into three erucic acid classes with $<$0.5%, 6 to 16% and $>$16% erucic acid at the ratio of 1:2:1 indicating that erucic acid was under the control of two alleles each of at two loci. F<sub>2</sub> seed segregation data supported this observation. Each allele contributed approximately 10% erucic acid. The high glucosinolate B. carinata line C90-14, low glucosinolate <i>B. napus</i> cultivar Westar and <i>B. juncea</i> line J90-4253 were chosen as parents for the development of non2-propenyl glucosinolate <i>B. carinata</i>. The objective was to transfer genes for non2-propenyl glucosinolate content from <i>B. napus</i> and <i>B. juncea</i> into <i>B. carinata.</i> Interspecific crosses were made between <i>B. carinata</i> and <i>B. napus</i>, <i>B. carinata</i> and <i>B. juncea</i> and the interspecific F<sub>1</sub> generations were backcrossed to <i>B. carinata</i>. Backcross F<sub>1</sub> plants from the two interspecific crosses were intercrossed in an attempt to combine the two sources for non2-propenyl glucosinolate content in one genotype. Seed of backcross F<sub>1</sub> plants of the cropss ((<i>B. carinata</i> x <i>B. napus</i>) x <i>B. carinata</i>) contained a high concentration of 2-propenyl glucosinolate similar to those of <i>B. carinata</i>. Introgression of C genome chromosomes of <i>B. napus</i> into <i>B. carinata</i> was not effective in redirecting glucosinolate synthesis away from 2-propenyl and into 3-butenyl glucosinolate. This indicated that C genome chromosomes do not contain genetic factors for C3 $\to$ C4 glucosinolate precursor chain elongation, and that 2-propenyl glucosinolate synthesis is primarily controlled by genes on B genome chromosomes. Seed of ackcross F<sub>2</sub> plants of the cross ((<i>B. carinata</i> x <i>B. juncea</i>) x <i>B. carinata</i>) contained much reduced levels of 2-propenyl glucosinolate indicating that genetic factors for C3 $\to$ C4 glucosinolate precursor chain elongation were introgressed from the B genome of <i>B. juncea</i> into the B genome of <i>B. carinata</i>. However, a complete diversion of glucosinolate synthesis from 2-propenyl to 3-butenyl was not achieved. Further selections in segregating F<sub>4</sub> and F<sub>5</sub> generations of <i>B. juncea</i> derived <i>B. carinata</i> populations could yield the desired zero 2-propenyl glucosinolate B. carinata. The double interspecific cross was unsuccessful.
author2 Devine, Malcolm
author_facet Devine, Malcolm
Alemaw, Getinet
author Alemaw, Getinet
author_sort Alemaw, Getinet
title Inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines
title_short Inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines
title_full Inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines
title_fullStr Inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines
title_full_unstemmed Inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines
title_sort inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines
publisher University of Saskatchewan
publishDate 1996
url http://library.usask.ca/theses/available/etd-10212004-000353
work_keys_str_mv AT alemawgetinet inheritanceoferucicacidinibrassicacarinataiabraunanddevelopmentoflowglucosinolatelines
_version_ 1716531888629219328
spelling ndltd-USASK-oai-usask.ca-etd-10212004-0003532013-01-08T16:31:39Z Inheritance of erucic acid in <i>brassica carinata</i> a braun and development of low glucosinolate lines Alemaw, Getinet crop science crop development plant genetics Ethiopian mustard oilseed <p>Ethiopian mustard (<i>Brassica carinata</i> A. Braun) or gomenzer is an oilseed crop that is well adapted to the highlands of Ethiopia. Evaluation of the local germplasm has resulted in the registration of high yielding cultivars, such as Dodolla and S-67. The oil of gomenzer contains about 40% erucic acid and the meal is high in glucosinolates. The objective of this research was to study the inheritance of erucic acid content in gomenzer and to introgress genes for the non2-propenyl glucosinolate trait from <i>B. napus</i> and <i>B. juncea</i>. The erucic acid content of F<sub>1</sub> seed from reciprocal crosses between the high erucic acid cultivars Dodolla and S-67 and zero erucic acid line C90-14 was intermediate between the parents indicating that erucic acid content in B. carinata was controlled by two nondominant genes with two alleles acting in an additive manner. Backcross F<sub>1</sub> seed derived from the backcross to the low erucic acid parent fell into three erucic acid classes with $<$0.5%, 6 to 16% and $>$16% erucic acid at the ratio of 1:2:1 indicating that erucic acid was under the control of two alleles each of at two loci. F<sub>2</sub> seed segregation data supported this observation. Each allele contributed approximately 10% erucic acid. The high glucosinolate B. carinata line C90-14, low glucosinolate <i>B. napus</i> cultivar Westar and <i>B. juncea</i> line J90-4253 were chosen as parents for the development of non2-propenyl glucosinolate <i>B. carinata</i>. The objective was to transfer genes for non2-propenyl glucosinolate content from <i>B. napus</i> and <i>B. juncea</i> into <i>B. carinata.</i> Interspecific crosses were made between <i>B. carinata</i> and <i>B. napus</i>, <i>B. carinata</i> and <i>B. juncea</i> and the interspecific F<sub>1</sub> generations were backcrossed to <i>B. carinata</i>. Backcross F<sub>1</sub> plants from the two interspecific crosses were intercrossed in an attempt to combine the two sources for non2-propenyl glucosinolate content in one genotype. Seed of backcross F<sub>1</sub> plants of the cropss ((<i>B. carinata</i> x <i>B. napus</i>) x <i>B. carinata</i>) contained a high concentration of 2-propenyl glucosinolate similar to those of <i>B. carinata</i>. Introgression of C genome chromosomes of <i>B. napus</i> into <i>B. carinata</i> was not effective in redirecting glucosinolate synthesis away from 2-propenyl and into 3-butenyl glucosinolate. This indicated that C genome chromosomes do not contain genetic factors for C3 $\to$ C4 glucosinolate precursor chain elongation, and that 2-propenyl glucosinolate synthesis is primarily controlled by genes on B genome chromosomes. Seed of ackcross F<sub>2</sub> plants of the cross ((<i>B. carinata</i> x <i>B. juncea</i>) x <i>B. carinata</i>) contained much reduced levels of 2-propenyl glucosinolate indicating that genetic factors for C3 $\to$ C4 glucosinolate precursor chain elongation were introgressed from the B genome of <i>B. juncea</i> into the B genome of <i>B. carinata</i>. However, a complete diversion of glucosinolate synthesis from 2-propenyl to 3-butenyl was not achieved. Further selections in segregating F<sub>4</sub> and F<sub>5</sub> generations of <i>B. juncea</i> derived <i>B. carinata</i> populations could yield the desired zero 2-propenyl glucosinolate B. carinata. The double interspecific cross was unsuccessful. Devine, Malcolm University of Saskatchewan 1996-01-01 text application/pdf http://library.usask.ca/theses/available/etd-10212004-000353 http://library.usask.ca/theses/available/etd-10212004-000353 en unrestricted I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.