Nonreplicative DNA Helicases Involved in Maintaining Genome Stability

Double-strand breaks and stalled forks arise when the replication machinery encounters damage from exogenous sources like DNA damaging agents or ionizing radiation, and require specific DNA helicases to resolve these structures. Sgs1 of Saccharomyces cerevisiae is a member of the RecQ family of DNA...

Full description

Bibliographic Details
Main Author: Syed, Salahuddin
Format: Others
Published: Scholar Commons 2016
Subjects:
Online Access:http://scholarcommons.usf.edu/etd/6408
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7604&context=etd
id ndltd-USF-oai-scholarcommons.usf.edu-etd-7604
record_format oai_dc
collection NDLTD
format Others
sources NDLTD
topic RecQ Helicases
DNA repair
Sgs1
RECQL5
Rrm3
Cell Biology
Genetics
Molecular Biology
spellingShingle RecQ Helicases
DNA repair
Sgs1
RECQL5
Rrm3
Cell Biology
Genetics
Molecular Biology
Syed, Salahuddin
Nonreplicative DNA Helicases Involved in Maintaining Genome Stability
description Double-strand breaks and stalled forks arise when the replication machinery encounters damage from exogenous sources like DNA damaging agents or ionizing radiation, and require specific DNA helicases to resolve these structures. Sgs1 of Saccharomyces cerevisiae is a member of the RecQ family of DNA helicases and has a role in DNA repair and recombination. The RecQ family includes human genes BLM, WRN, RECQL4, RECQL1, and RECQL5. Mutations in BLM, WRN, and RECQL4 result in genetic disorders characterized by developmental abnormalities and a predisposition to cancer. All RecQ helicases have common features including a helicase domain, an RQC domain, and a HRDC domain. In order to elucidate the role of these domains and to identify additional regions in Sgs1 that are required for the maintenance of genome integrity, a series of systematic truncations to the C terminus of Sgs1 were created. We found that ablating the HRDC domain does not cause an increase in accumulating gross chromosomal rearrangements (GCRs). But deleting the RQC domain and leaving the helicase domain intact resulted in a rate similar to that of a helicase-defective mutant. Additionally, we exposed these truncation mutants to HU and MMS and demonstrated that losing up to 200 amino acids from the C terminus did not increase sensitivity to HU or MMS, whereas losing 300 amino acids or more led to sensitivity similar to that of an sgs1∆ cell. These results suggest that the RQC domain, believed to mediate protein-protein interactions and required for DNA recognition, is important for Sgs1’s role in suppressing GCRs and sensitivity to HU and MMS, whereas the HRDC domain that is important for DNA binding is not necessary. RecQL5 is a RecQ-like helicase that is distinct from the other members through its three different isoforms, RecQL5α, RecQL5β, and RecQL5ɣ. It has a helicase domain and an RQC domain, but lacks the HRDC domain that other RecQ-like helicases possess. In contrast to Blm, Wrn, and RecQL4, no human disorder has been associated with defects in RecQL5. For this reason the role of RecQL5 in the cell has remained largely unknown. To try to elucidate the pathways RecQL5 may be involved in we performed a yeast two hybrid to identify RecQL5-interacting proteins. We found that RecQL5 interacts with Hlp2, an ATP-dependent RNA helicase, and Ube2I, a SUMO-conjugating enzyme. These novel interactions shed light on a potential role of RecQL5 in the cell as a transcriptional regulator. Saccharomyces cerevisiae, Rrm3, is a 5’-3’ DNA helicase that is part of the Pif1 family of DNA helicases and is conserved from yeast to humans. It was initially discovered as a suppressor of recombination between tandem arrays and ribosomal DNA (rDNA) repeats. In its absence there are increased rates of extra-chromosomal rDNA circles, and cells accumulate X-shaped intermediates at stalled forks. Rrm3 may be involved in displacing DNA-protein blocks and unwinding DNA to facilitate fork progression. We used stable isotope labeling by amino acids in cell culture (SILAC)- based quantitative mass spectrometry in order to determine proteins that deal with the stalled fork in the absence of Rrm3. We found that in the absence of Rrm3 and increased replication fork pausing, there is a requirement for the error-free DNA damage bypass factor Rad5 and the homologous recombination factor Rdh54 for fork recovery. We also report a novel role for Rrm3 in controlling DNA synthesis upon exposure to replication stress and that this requirement is due to interaction with Orc5, a subunit of the origin recognition complex. Interaction of Orc5 was found to be located within a 26-residue region in the unstructured N-terminal tail of Rrm3 and loss of this interaction resulted in lethality with cells devoid of the replication checkpoint mediator Mrc1, and DNA damage sensitivity with cells lacking Tof1. In this study we describe two independent roles of Rrm3, a helicase-dependent role that requires Rad5 and Rdh54 for fork recovery, and a helicase-independent role that requires Orc5 interaction to control DNA synthesis. Our data provides novel insight into the role of DNA helicases and their role in protecting the genome. Through yeast genetics it was possible to determine the importance of the C terminus of Sgs1 and elucidate new RecQL5 interacting partners that shed light onto roles for RecQL5 distinct from other RecQ like helicases. Quantitative mass spectrometry allowed us to take on a more global view of the cell and determine how it responds to replication fork pausing in the absence of Rrm3. Using both proteomics and yeast genetics we were able to better understand how these DNA helicases contribute to maintaining genome stability.
author Syed, Salahuddin
author_facet Syed, Salahuddin
author_sort Syed, Salahuddin
title Nonreplicative DNA Helicases Involved in Maintaining Genome Stability
title_short Nonreplicative DNA Helicases Involved in Maintaining Genome Stability
title_full Nonreplicative DNA Helicases Involved in Maintaining Genome Stability
title_fullStr Nonreplicative DNA Helicases Involved in Maintaining Genome Stability
title_full_unstemmed Nonreplicative DNA Helicases Involved in Maintaining Genome Stability
title_sort nonreplicative dna helicases involved in maintaining genome stability
publisher Scholar Commons
publishDate 2016
url http://scholarcommons.usf.edu/etd/6408
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7604&context=etd
work_keys_str_mv AT syedsalahuddin nonreplicativednahelicasesinvolvedinmaintaininggenomestability
_version_ 1718518323040223232
spelling ndltd-USF-oai-scholarcommons.usf.edu-etd-76042017-08-22T05:13:14Z Nonreplicative DNA Helicases Involved in Maintaining Genome Stability Syed, Salahuddin Double-strand breaks and stalled forks arise when the replication machinery encounters damage from exogenous sources like DNA damaging agents or ionizing radiation, and require specific DNA helicases to resolve these structures. Sgs1 of Saccharomyces cerevisiae is a member of the RecQ family of DNA helicases and has a role in DNA repair and recombination. The RecQ family includes human genes BLM, WRN, RECQL4, RECQL1, and RECQL5. Mutations in BLM, WRN, and RECQL4 result in genetic disorders characterized by developmental abnormalities and a predisposition to cancer. All RecQ helicases have common features including a helicase domain, an RQC domain, and a HRDC domain. In order to elucidate the role of these domains and to identify additional regions in Sgs1 that are required for the maintenance of genome integrity, a series of systematic truncations to the C terminus of Sgs1 were created. We found that ablating the HRDC domain does not cause an increase in accumulating gross chromosomal rearrangements (GCRs). But deleting the RQC domain and leaving the helicase domain intact resulted in a rate similar to that of a helicase-defective mutant. Additionally, we exposed these truncation mutants to HU and MMS and demonstrated that losing up to 200 amino acids from the C terminus did not increase sensitivity to HU or MMS, whereas losing 300 amino acids or more led to sensitivity similar to that of an sgs1∆ cell. These results suggest that the RQC domain, believed to mediate protein-protein interactions and required for DNA recognition, is important for Sgs1’s role in suppressing GCRs and sensitivity to HU and MMS, whereas the HRDC domain that is important for DNA binding is not necessary. RecQL5 is a RecQ-like helicase that is distinct from the other members through its three different isoforms, RecQL5α, RecQL5β, and RecQL5ɣ. It has a helicase domain and an RQC domain, but lacks the HRDC domain that other RecQ-like helicases possess. In contrast to Blm, Wrn, and RecQL4, no human disorder has been associated with defects in RecQL5. For this reason the role of RecQL5 in the cell has remained largely unknown. To try to elucidate the pathways RecQL5 may be involved in we performed a yeast two hybrid to identify RecQL5-interacting proteins. We found that RecQL5 interacts with Hlp2, an ATP-dependent RNA helicase, and Ube2I, a SUMO-conjugating enzyme. These novel interactions shed light on a potential role of RecQL5 in the cell as a transcriptional regulator. Saccharomyces cerevisiae, Rrm3, is a 5’-3’ DNA helicase that is part of the Pif1 family of DNA helicases and is conserved from yeast to humans. It was initially discovered as a suppressor of recombination between tandem arrays and ribosomal DNA (rDNA) repeats. In its absence there are increased rates of extra-chromosomal rDNA circles, and cells accumulate X-shaped intermediates at stalled forks. Rrm3 may be involved in displacing DNA-protein blocks and unwinding DNA to facilitate fork progression. We used stable isotope labeling by amino acids in cell culture (SILAC)- based quantitative mass spectrometry in order to determine proteins that deal with the stalled fork in the absence of Rrm3. We found that in the absence of Rrm3 and increased replication fork pausing, there is a requirement for the error-free DNA damage bypass factor Rad5 and the homologous recombination factor Rdh54 for fork recovery. We also report a novel role for Rrm3 in controlling DNA synthesis upon exposure to replication stress and that this requirement is due to interaction with Orc5, a subunit of the origin recognition complex. Interaction of Orc5 was found to be located within a 26-residue region in the unstructured N-terminal tail of Rrm3 and loss of this interaction resulted in lethality with cells devoid of the replication checkpoint mediator Mrc1, and DNA damage sensitivity with cells lacking Tof1. In this study we describe two independent roles of Rrm3, a helicase-dependent role that requires Rad5 and Rdh54 for fork recovery, and a helicase-independent role that requires Orc5 interaction to control DNA synthesis. Our data provides novel insight into the role of DNA helicases and their role in protecting the genome. Through yeast genetics it was possible to determine the importance of the C terminus of Sgs1 and elucidate new RecQL5 interacting partners that shed light onto roles for RecQL5 distinct from other RecQ like helicases. Quantitative mass spectrometry allowed us to take on a more global view of the cell and determine how it responds to replication fork pausing in the absence of Rrm3. Using both proteomics and yeast genetics we were able to better understand how these DNA helicases contribute to maintaining genome stability. 2016-04-05T07:00:00Z text application/pdf http://scholarcommons.usf.edu/etd/6408 http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7604&context=etd default Graduate Theses and Dissertations Scholar Commons RecQ Helicases DNA repair Sgs1 RECQL5 Rrm3 Cell Biology Genetics Molecular Biology