A Measure of the Amount of Phosphate Adsorption and the Rate of Release of Indigenous Phosphate from a Desert Soil

The capacity of a calcareous desert soil, Thiokol silt loam, to retain natural , as well as added , orthophosphate-P was measured by equilibrium adsorption employing a batch technique and evaluated using the two-slope Langmuir adsorption isotherm. From these data, corrected to account for indigenous...

Full description

Bibliographic Details
Main Author: Evans, Robert Lindsey
Format: Others
Published: DigitalCommons@USU 1973
Subjects:
Online Access:https://digitalcommons.usu.edu/etd/3780
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4791&context=etd
id ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-4791
record_format oai_dc
spelling ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-47912019-10-13T05:36:01Z A Measure of the Amount of Phosphate Adsorption and the Rate of Release of Indigenous Phosphate from a Desert Soil Evans, Robert Lindsey The capacity of a calcareous desert soil, Thiokol silt loam, to retain natural , as well as added , orthophosphate-P was measured by equilibrium adsorption employing a batch technique and evaluated using the two-slope Langmuir adsorption isotherm. From these data, corrected to account for indigenous soil P, a hypothesis was formulated as to the nature of retention of P by the soil, including the identification of two interfacial reactions involving P, and a value calculated for the adsorption maximum as defined by the Langmuir isotherm equation f o r P with soil at each of two soil depths and t h ree constant temperatures within the range of biological activity . The initial reaction was considered to be surface adsorption , where phosphate ions interact with the clayand lime mineral surfaces at definite sites. The activity of the second mechanism was identified as adsorption, and in addition, the heterogeneous nucleation of metal phosphates on the lime mineral surfaces. In addition to these quantitative studies, the flux of P in the soil was also investigated for the same soil and temperatures by means of kinetic experiments conducted to identify the nature (mechanisms) and measure the rates and release maxima of indigenous P release from the soil. These experiments were carried out using an anion-exchange resin as an infinite sink for P, again applying a batch technique. Ultimately, the release of indigenous P from the soil under saturated conditions was attributed to three simultaneous first-order reactions. 'll1e rate constants of the three reactions were found to be of orders of 10-4, 10-5, and 10-6 (1/sec), and did not vary significantly with soil depth or ternperature. The three reactions above were identified as dissolution of poorly crystalline or amorphous calcium phosphates, the desorption of surface site adsorbed or labile P, and the slow dissolution of calcium hydroxyapatite, respectively. 1973-05-01T07:00:00Z text application/pdf https://digitalcommons.usu.edu/etd/3780 https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4791&context=etd Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). All Graduate Theses and Dissertations DigitalCommons@USU Phosphate adsorption rate of release indigenous phosphate desert soil Soil Science
collection NDLTD
format Others
sources NDLTD
topic Phosphate adsorption
rate of release
indigenous phosphate
desert soil
Soil Science
spellingShingle Phosphate adsorption
rate of release
indigenous phosphate
desert soil
Soil Science
Evans, Robert Lindsey
A Measure of the Amount of Phosphate Adsorption and the Rate of Release of Indigenous Phosphate from a Desert Soil
description The capacity of a calcareous desert soil, Thiokol silt loam, to retain natural , as well as added , orthophosphate-P was measured by equilibrium adsorption employing a batch technique and evaluated using the two-slope Langmuir adsorption isotherm. From these data, corrected to account for indigenous soil P, a hypothesis was formulated as to the nature of retention of P by the soil, including the identification of two interfacial reactions involving P, and a value calculated for the adsorption maximum as defined by the Langmuir isotherm equation f o r P with soil at each of two soil depths and t h ree constant temperatures within the range of biological activity . The initial reaction was considered to be surface adsorption , where phosphate ions interact with the clayand lime mineral surfaces at definite sites. The activity of the second mechanism was identified as adsorption, and in addition, the heterogeneous nucleation of metal phosphates on the lime mineral surfaces. In addition to these quantitative studies, the flux of P in the soil was also investigated for the same soil and temperatures by means of kinetic experiments conducted to identify the nature (mechanisms) and measure the rates and release maxima of indigenous P release from the soil. These experiments were carried out using an anion-exchange resin as an infinite sink for P, again applying a batch technique. Ultimately, the release of indigenous P from the soil under saturated conditions was attributed to three simultaneous first-order reactions. 'll1e rate constants of the three reactions were found to be of orders of 10-4, 10-5, and 10-6 (1/sec), and did not vary significantly with soil depth or ternperature. The three reactions above were identified as dissolution of poorly crystalline or amorphous calcium phosphates, the desorption of surface site adsorbed or labile P, and the slow dissolution of calcium hydroxyapatite, respectively.
author Evans, Robert Lindsey
author_facet Evans, Robert Lindsey
author_sort Evans, Robert Lindsey
title A Measure of the Amount of Phosphate Adsorption and the Rate of Release of Indigenous Phosphate from a Desert Soil
title_short A Measure of the Amount of Phosphate Adsorption and the Rate of Release of Indigenous Phosphate from a Desert Soil
title_full A Measure of the Amount of Phosphate Adsorption and the Rate of Release of Indigenous Phosphate from a Desert Soil
title_fullStr A Measure of the Amount of Phosphate Adsorption and the Rate of Release of Indigenous Phosphate from a Desert Soil
title_full_unstemmed A Measure of the Amount of Phosphate Adsorption and the Rate of Release of Indigenous Phosphate from a Desert Soil
title_sort measure of the amount of phosphate adsorption and the rate of release of indigenous phosphate from a desert soil
publisher DigitalCommons@USU
publishDate 1973
url https://digitalcommons.usu.edu/etd/3780
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4791&context=etd
work_keys_str_mv AT evansrobertlindsey ameasureoftheamountofphosphateadsorptionandtherateofreleaseofindigenousphosphatefromadesertsoil
AT evansrobertlindsey measureoftheamountofphosphateadsorptionandtherateofreleaseofindigenousphosphatefromadesertsoil
_version_ 1719266011691089920