Stable submicron protein particles : formation, properties, and pulmonary applications

The spray freezing into liquid (SFL) and thin film freezing (TFF) processes were utilized to produce 300 nm protein particles with surface areas on the order of 31 - 73 m²/g and 100% protein activities. Despite a cooling rate of ~10²-10³ K/s in SFL and TFF, the particle sizes and surface areas wer...

Full description

Bibliographic Details
Main Author: Engstrom, Joshua David, 1978-
Format: Others
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/2152/15975
id ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-15975
record_format oai_dc
spelling ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-159752015-09-20T17:06:18ZStable submicron protein particles : formation, properties, and pulmonary applicationsEngstrom, Joshua David, 1978-Protein particlesProteins--SynthesisThe spray freezing into liquid (SFL) and thin film freezing (TFF) processes were utilized to produce 300 nm protein particles with surface areas on the order of 31 - 73 m²/g and 100% protein activities. Despite a cooling rate of ~10²-10³ K/s in SFL and TFF, the particle sizes and surface areas were similar to those observed in the widely reported process, spray freeze-drying (SFD), where cooling rates reach 10⁶ K/s. In SFL and TFF, the thin liquid channels between the ice domains were sufficiently thin and freezing rates of the thin channels sufficiently fast to achieve the similar particle morphologies. Therefore, the extremely rapid cooling rate in the SFD process was not necessary to form the desired submicron protein particles. In SFL and TFF the surface area/volume ratio of the gas-liquid formed on the liquid protein formulations (46-600 cm⁻¹) was 1-2 orders of magnitude lower than in SFD (6000 cm⁻¹), leading to far less protein adsorption and aggregation. This larger exposure to the gas-liquid interface resulted in lower protein activities in SFD. Although protein stabilities are high in conventional lyophilization, cooling rates are on the order of 1 K/min resulting in large 30 to 100 [mu]m sized particles. Thus, the intermediate cooling rate regime for SFL and TFF, relative to SFD and lyophilization, offers a promising route to form stable submicron protein particles of interest in pulmonary and parenteral delivery applications. The rod-shaped protein particles produced by SFL and TFF are beneficial for forming suspensions stable against settling in hydrofluoroalkanes (HFA) for pressurized metered dose inhaler (pMDI) delivery. The flocculated rods are templated by atomized HFA droplets that evaporate and shrink to form particles with optimal aerodynamic diameters for deep lung delivery. Fine particle fractions of 38-48% were achieved. This novel concept for forming stable suspensions of flocs of rod shaped particles, and templating and shrinking the flocs to produce particles for efficient pMDI deep lung delivery is applicable to a wide variety of drugs.text2012-06-14T15:49:23Z2012-06-14T15:49:23Z2007-082012-06-14textelectronichttp://hdl.handle.net/2152/15975engCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.
collection NDLTD
language English
format Others
sources NDLTD
topic Protein particles
Proteins--Synthesis
spellingShingle Protein particles
Proteins--Synthesis
Engstrom, Joshua David, 1978-
Stable submicron protein particles : formation, properties, and pulmonary applications
description The spray freezing into liquid (SFL) and thin film freezing (TFF) processes were utilized to produce 300 nm protein particles with surface areas on the order of 31 - 73 m²/g and 100% protein activities. Despite a cooling rate of ~10²-10³ K/s in SFL and TFF, the particle sizes and surface areas were similar to those observed in the widely reported process, spray freeze-drying (SFD), where cooling rates reach 10⁶ K/s. In SFL and TFF, the thin liquid channels between the ice domains were sufficiently thin and freezing rates of the thin channels sufficiently fast to achieve the similar particle morphologies. Therefore, the extremely rapid cooling rate in the SFD process was not necessary to form the desired submicron protein particles. In SFL and TFF the surface area/volume ratio of the gas-liquid formed on the liquid protein formulations (46-600 cm⁻¹) was 1-2 orders of magnitude lower than in SFD (6000 cm⁻¹), leading to far less protein adsorption and aggregation. This larger exposure to the gas-liquid interface resulted in lower protein activities in SFD. Although protein stabilities are high in conventional lyophilization, cooling rates are on the order of 1 K/min resulting in large 30 to 100 [mu]m sized particles. Thus, the intermediate cooling rate regime for SFL and TFF, relative to SFD and lyophilization, offers a promising route to form stable submicron protein particles of interest in pulmonary and parenteral delivery applications. The rod-shaped protein particles produced by SFL and TFF are beneficial for forming suspensions stable against settling in hydrofluoroalkanes (HFA) for pressurized metered dose inhaler (pMDI) delivery. The flocculated rods are templated by atomized HFA droplets that evaporate and shrink to form particles with optimal aerodynamic diameters for deep lung delivery. Fine particle fractions of 38-48% were achieved. This novel concept for forming stable suspensions of flocs of rod shaped particles, and templating and shrinking the flocs to produce particles for efficient pMDI deep lung delivery is applicable to a wide variety of drugs. === text
author Engstrom, Joshua David, 1978-
author_facet Engstrom, Joshua David, 1978-
author_sort Engstrom, Joshua David, 1978-
title Stable submicron protein particles : formation, properties, and pulmonary applications
title_short Stable submicron protein particles : formation, properties, and pulmonary applications
title_full Stable submicron protein particles : formation, properties, and pulmonary applications
title_fullStr Stable submicron protein particles : formation, properties, and pulmonary applications
title_full_unstemmed Stable submicron protein particles : formation, properties, and pulmonary applications
title_sort stable submicron protein particles : formation, properties, and pulmonary applications
publishDate 2012
url http://hdl.handle.net/2152/15975
work_keys_str_mv AT engstromjoshuadavid1978 stablesubmicronproteinparticlesformationpropertiesandpulmonaryapplications
_version_ 1716822209692958720