Magneto-hydrodynamics simulation study of high density thermal plasmas in plasma acceleration devices
The development of a Magneto-hydrodynamics (MHD) numerical tool to study high density thermal plasmas in plasma acceleration devices is presented. The MHD governing equations represent eight conservation equations for the evolution of density, momentum, energy and induced magnetic fields in a plasma...
Main Author: | |
---|---|
Format: | Others |
Language: | en_US |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/2152/21618 |
Summary: | The development of a Magneto-hydrodynamics (MHD) numerical tool to study high density thermal plasmas in plasma acceleration devices is presented. The MHD governing equations represent eight conservation equations for the evolution of density, momentum, energy and induced magnetic fields in a plasma. A matrix-free implicit method is developed to solve these conservation equations within the framework of an unstructured grid finite volume formulation. The analytic form of the convective flux Jacobian is derived for general unstructured grids. A Lower Upper Symmetric Gauss Seidel (LU-SGS) technique is developed as part of the implicit scheme. A coloring based algorithm for parallelization of this technique is also presented and its computational efficiency is compared with a global matrix solve technique that uses the GMRES (Generalized Minimum Residual) algorithm available in the PETSc (Portable Extensible Toolkit for Scientific computation) libraries. The verification cases used for this study are the MHD shock tube problem in one, two and three dimensions, the oblique shock and the Hartmann flow problem. It is seen that the matrix free method is comparatively faster and shows excellent scaling on multiple cores compared to the global matrix solve technique. The numerical model was thus verified against the above mentioned standard test cases and two application problems were studied. These include the simulation of plasma deflagration phenomenon in a coaxial plasma accelerator and a novel high speed flow control device called the Rail Plasma Actuator (RailPAc). Experimental studies on coaxial plasma accelerators have revealed two different modes of operation based on the delay between gas loading and discharge ignition. Longer delays lead to the detonation or the snowplow mode while shorter delays lead to the relatively efficient stationary or deflagration mode. One of the theories that explain the two different modes is based on plasma resistivity. A numerical modeling study is presented here in the context of a coaxial plasma accelerator and the effect of plasma resistivity is dealt with in detail. The simulated results pertaining to axial distribution of radial currents are compared with experimental measurements which show good agreement with each other. The simulations show that magnetic field diffusion is dominant at lower conductivities which tend to form a stationary region of high current density close to the inlet end of the device. Higher conductivities led to the formation of propagating current sheet like features due to greater convection of magnetic field. This study also validates the theory behind the two modes of operation based on plasma resistivity. The RailPAc (Rail Plasma Actuator) is a novel flow control device that uses the magnetic Lorentz forces for fluid flow actuation at atmospheric pressures. Experimental studies reveal actuation ~ 10-100 m/s can be achieved with this device which is much larger than conventional electro-hydrodynamic (EHD) force based plasma actuators. A magneto-hydrodynamics simulation study of this device is presented. The model is further developed to incorporate applied electric and magnetic fields seen in this device. The snowplow model which is typically used for studying pulsed plasma thrusters is used to predict the arc velocities which agrees well with experimental measurements. Two dimensional simulations were performed to study the effect of Lorentz forcing and heating effects on fluid flow actuation. Actuation on the order of 100 m/s is attained at the head of the current sheet due to the effect of Lorentz forcing alone. The inclusion of heating effects led to isotropic blast wave like actuation which is detrimental to the performance of RailPAc. This study also revealed the deficiencies of a single fluid model and a more accurate multi-fluid approach is proposed for future work. === text |
---|