Dynamics of woody plant encroachment in Texas savannas : density dependence, environmental heterogeneity, and spatial patterns

Woody plant encroachment, that is, a substantial increase in the abundance of woody plants in a grassland or savanna, occurs in many parts of the world. It often has large effects on plant and animal populations and communities and on ecosystem properties and processes. However, little is known ab...

Full description

Bibliographic Details
Main Author: González, Ana Verónica
Format: Others
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/2152/ETD-UT-2010-08-1887
id ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2010-08-1887
record_format oai_dc
spelling ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2010-08-18872015-09-20T16:55:44ZDynamics of woody plant encroachment in Texas savannas : density dependence, environmental heterogeneity, and spatial patternsGonzález, Ana VerónicaCentral TexasSavannasWoody plant encroachmentJuniperus asheiEdwards PlateauWoody plantsWoody plant coverInvasive plantsInvasive speciesWoody plant encroachment, that is, a substantial increase in the abundance of woody plants in a grassland or savanna, occurs in many parts of the world. It often has large effects on plant and animal populations and communities and on ecosystem properties and processes. However, little is known about the dynamics of woody plant encroachment and how these are affected by soils, by topography, and by the spatial pattern of the vegetation. Encroachment in turn can affect the spatial pattern of the vegetation. Using data from historical aerial photographs, I measured changes in woody plant cover and constructed, parameterized and compared a set of dynamic models of woody plant encroachment in central Texas savannas. These models predicted final woody cover from initial woody cover and the initial spatial configuration of woody plants. Then I incorporated soil and topography into these models to determine their effects. Finally, I examined the effects of encroachment on the spatial pattern of the vegetation. Incorporating negative density dependence in our models improved their fit, demonstrating that encroachment is density-dependent. A function that predicted the formation of new woody patches from a density-independent seed supply also improved the models' performance. The improvement in the models that resulted from incorporating the total length of woody-herbaceous edges confirmed that encroachment in this system occurs in part by the outward expansion of woody patches. The spatial pattern of the vegetation changed during woody plant encroachment. Spatial pattern (measured as degree of fragmentation) often had a non-linear relationship with cover. Furthermore, the spatial heterogeneity in fragmentation, that is, plot-to-plot variation in the degree of fragmentation, also changed during encroachment. Topography and soil type had, in general, little effect the dynamics of woody plant encroachment. Therefore, a relatively simple model of woody plant encroachment provided good predictions of woody cover at the end of the time periods. Other systems experiencing woody plant encroachment, forest succession, or invasion by non-native plants could be modeled using the same approach.text2010-11-10T21:52:25Z2010-11-10T21:52:34Z2010-11-10T21:52:25Z2010-11-10T21:52:34Z2010-082010-11-10August 20102010-11-10T21:52:34Zthesisapplication/pdfhttp://hdl.handle.net/2152/ETD-UT-2010-08-1887eng
collection NDLTD
language English
format Others
sources NDLTD
topic Central Texas
Savannas
Woody plant encroachment
Juniperus ashei
Edwards Plateau
Woody plants
Woody plant cover
Invasive plants
Invasive species
spellingShingle Central Texas
Savannas
Woody plant encroachment
Juniperus ashei
Edwards Plateau
Woody plants
Woody plant cover
Invasive plants
Invasive species
González, Ana Verónica
Dynamics of woody plant encroachment in Texas savannas : density dependence, environmental heterogeneity, and spatial patterns
description Woody plant encroachment, that is, a substantial increase in the abundance of woody plants in a grassland or savanna, occurs in many parts of the world. It often has large effects on plant and animal populations and communities and on ecosystem properties and processes. However, little is known about the dynamics of woody plant encroachment and how these are affected by soils, by topography, and by the spatial pattern of the vegetation. Encroachment in turn can affect the spatial pattern of the vegetation. Using data from historical aerial photographs, I measured changes in woody plant cover and constructed, parameterized and compared a set of dynamic models of woody plant encroachment in central Texas savannas. These models predicted final woody cover from initial woody cover and the initial spatial configuration of woody plants. Then I incorporated soil and topography into these models to determine their effects. Finally, I examined the effects of encroachment on the spatial pattern of the vegetation. Incorporating negative density dependence in our models improved their fit, demonstrating that encroachment is density-dependent. A function that predicted the formation of new woody patches from a density-independent seed supply also improved the models' performance. The improvement in the models that resulted from incorporating the total length of woody-herbaceous edges confirmed that encroachment in this system occurs in part by the outward expansion of woody patches. The spatial pattern of the vegetation changed during woody plant encroachment. Spatial pattern (measured as degree of fragmentation) often had a non-linear relationship with cover. Furthermore, the spatial heterogeneity in fragmentation, that is, plot-to-plot variation in the degree of fragmentation, also changed during encroachment. Topography and soil type had, in general, little effect the dynamics of woody plant encroachment. Therefore, a relatively simple model of woody plant encroachment provided good predictions of woody cover at the end of the time periods. Other systems experiencing woody plant encroachment, forest succession, or invasion by non-native plants could be modeled using the same approach. === text
author González, Ana Verónica
author_facet González, Ana Verónica
author_sort González, Ana Verónica
title Dynamics of woody plant encroachment in Texas savannas : density dependence, environmental heterogeneity, and spatial patterns
title_short Dynamics of woody plant encroachment in Texas savannas : density dependence, environmental heterogeneity, and spatial patterns
title_full Dynamics of woody plant encroachment in Texas savannas : density dependence, environmental heterogeneity, and spatial patterns
title_fullStr Dynamics of woody plant encroachment in Texas savannas : density dependence, environmental heterogeneity, and spatial patterns
title_full_unstemmed Dynamics of woody plant encroachment in Texas savannas : density dependence, environmental heterogeneity, and spatial patterns
title_sort dynamics of woody plant encroachment in texas savannas : density dependence, environmental heterogeneity, and spatial patterns
publishDate 2010
url http://hdl.handle.net/2152/ETD-UT-2010-08-1887
work_keys_str_mv AT gonzalezanaveronica dynamicsofwoodyplantencroachmentintexassavannasdensitydependenceenvironmentalheterogeneityandspatialpatterns
_version_ 1716821212134375424