Luminescent and magnetic materials based on conducting metallopolymers

Conducting metallopolymers are a new and fascinating class of materials that incorporate metals into conducting polymer systems. These new materials combine the processing advantages of polymers with the electronic, optical and catalytic properties provided by the presence of metal centers. A large...

Full description

Bibliographic Details
Main Author: Chen, Xiaoyan
Format: Others
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/2152/ETD-UT-2011-08-4012
id ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2011-08-4012
record_format oai_dc
spelling ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2011-08-40122015-09-20T17:12:48ZLuminescent and magnetic materials based on conducting metallopolymersChen, XiaoyanConducting MetallopolymerLuminescent materialLanthanidePlatinumConducting metallopolymers are a new and fascinating class of materials that incorporate metals into conducting polymer systems. These new materials combine the processing advantages of polymers with the electronic, optical and catalytic properties provided by the presence of metal centers. A large number of conducting metallopolymers have been synthesized and studied and have found applications in areas such as sensors, memory and light-emitting devices, solar cells, and catalysis. Among the various applications, conducting metallopolymers as emitting layers in high-efficiency polymer light-emitting diodes (PLEDs) attract great research interest. In order to get PLEDs with long lifetime, high quantum efficiency, and excellent color purity, we have developed an approach to synthesize well-defined conducting metallopolymers that incorporate lanthanide complexes in an inner sphere fashion. As such, we aim to take full advantage of the properties of both organic and inorganic components with high efficiency due to the direct electronic interface this configuration creates. Lanthanide complexes with polymerizable groups have been synthesized, characterized and utilized as precursors for conducting metallopolymers. These lanthanide monomers and corresponding metallopolymers display visible and near-infrared luminescence at room temperature that is consistent with efficient energy transfer from the organic polymer matrix to the lanthanide metal ion followed by lanthanide luminescence. As a second but closely related area, electrogenerated chemiluminescence (ECL) of polymers is attractive for light-emitting devices. Up to now, there are limited studies dealing with ECL from pure active materials deposited as solid films on electrodes. The operation theory and degradation mechanism are still under investigation. To advance the development of ECL of conducting metallopolymers, we prepared cyclometalated Pt(II) complexes with polythiophene system. Conducting metallopolymer films are prepared through controlled electropolymerization. ECL of the Pt(II) containing conducting polymers are observed for the first time. Finally, a preliminary study of magnetism and conductivity of conducting metallopolymers has been done. We incorporate Fe(II)/Fe(III) into our newly designed ligand systems with polymerizable thiophene derivatives. Three complexes show spin crossover (SCO) phenomena with the highest transition temperature at 265 K, which are further verified by variable temperature electron paramagnetic resonance spectra.text2013-01-10T18:57:00Z2013-01-10T18:57:00Z2011-082013-01-10August 20112013-01-10T18:57:31Zthesisapplication/pdfhttp://hdl.handle.net/2152/ETD-UT-2011-08-40122152/ETD-UT-2011-08-4012eng
collection NDLTD
language English
format Others
sources NDLTD
topic Conducting Metallopolymer
Luminescent material
Lanthanide
Platinum
spellingShingle Conducting Metallopolymer
Luminescent material
Lanthanide
Platinum
Chen, Xiaoyan
Luminescent and magnetic materials based on conducting metallopolymers
description Conducting metallopolymers are a new and fascinating class of materials that incorporate metals into conducting polymer systems. These new materials combine the processing advantages of polymers with the electronic, optical and catalytic properties provided by the presence of metal centers. A large number of conducting metallopolymers have been synthesized and studied and have found applications in areas such as sensors, memory and light-emitting devices, solar cells, and catalysis. Among the various applications, conducting metallopolymers as emitting layers in high-efficiency polymer light-emitting diodes (PLEDs) attract great research interest. In order to get PLEDs with long lifetime, high quantum efficiency, and excellent color purity, we have developed an approach to synthesize well-defined conducting metallopolymers that incorporate lanthanide complexes in an inner sphere fashion. As such, we aim to take full advantage of the properties of both organic and inorganic components with high efficiency due to the direct electronic interface this configuration creates. Lanthanide complexes with polymerizable groups have been synthesized, characterized and utilized as precursors for conducting metallopolymers. These lanthanide monomers and corresponding metallopolymers display visible and near-infrared luminescence at room temperature that is consistent with efficient energy transfer from the organic polymer matrix to the lanthanide metal ion followed by lanthanide luminescence. As a second but closely related area, electrogenerated chemiluminescence (ECL) of polymers is attractive for light-emitting devices. Up to now, there are limited studies dealing with ECL from pure active materials deposited as solid films on electrodes. The operation theory and degradation mechanism are still under investigation. To advance the development of ECL of conducting metallopolymers, we prepared cyclometalated Pt(II) complexes with polythiophene system. Conducting metallopolymer films are prepared through controlled electropolymerization. ECL of the Pt(II) containing conducting polymers are observed for the first time. Finally, a preliminary study of magnetism and conductivity of conducting metallopolymers has been done. We incorporate Fe(II)/Fe(III) into our newly designed ligand systems with polymerizable thiophene derivatives. Three complexes show spin crossover (SCO) phenomena with the highest transition temperature at 265 K, which are further verified by variable temperature electron paramagnetic resonance spectra. === text
author Chen, Xiaoyan
author_facet Chen, Xiaoyan
author_sort Chen, Xiaoyan
title Luminescent and magnetic materials based on conducting metallopolymers
title_short Luminescent and magnetic materials based on conducting metallopolymers
title_full Luminescent and magnetic materials based on conducting metallopolymers
title_fullStr Luminescent and magnetic materials based on conducting metallopolymers
title_full_unstemmed Luminescent and magnetic materials based on conducting metallopolymers
title_sort luminescent and magnetic materials based on conducting metallopolymers
publishDate 2013
url http://hdl.handle.net/2152/ETD-UT-2011-08-4012
work_keys_str_mv AT chenxiaoyan luminescentandmagneticmaterialsbasedonconductingmetallopolymers
_version_ 1716822802882887680