The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cells

High efficiency photovoltaic solar cells are expected to continue to be important for a variety of terrestrial and space power applications. Solar cells made of optically thick materials often cannot meet the cost, efficiency, or physical requirements for specialized applications and, increasingly,...

Full description

Bibliographic Details
Main Author: McPheeters, Claiborne Ott
Format: Others
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/2152/ETD-UT-2012-05-5040
id ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2012-05-5040
record_format oai_dc
spelling ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2012-05-50402015-09-20T17:07:12ZThe application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cellsMcPheeters, Claiborne OttGaAsInAsInGaAsGaInAsSolar cellPhotovoltaicThin filmQuantum wellQuantum dotLight trappingWaveguideNanoparticleDiffractionGratingScatteringHigh efficiency photovoltaic solar cells are expected to continue to be important for a variety of terrestrial and space power applications. Solar cells made of optically thick materials often cannot meet the cost, efficiency, or physical requirements for specialized applications and, increasingly, for traditional applications. This dissertation investigates improving the performance of single-junction GaAs solar cells by incorporating InGaAs/GaAs quantum wells and quantum dots to increase their spectral response bandwidth, and by incorporating structures that confine light in the devices to improve their absorption of it. InGaAs/GaAs quantum dots-in-wells extend the response of GaAs homojunction devices to wavelengths >1200 nm. Nanoparticles that are randomly deposited on the top of optically thick devices scatter light into waveguide modes of the device structures, increasing their absorption of electromagnetic energy and improving their short-circuit current by up to 16%. Multiply periodic diffractive structures have been optimized using rigorous software algorithms and fabricated on the back sides of thin film quantum dot-in-well solar cells, improving their spectral response at wavelengths 850 nm to 1200 nm, where only the quantum dot-in-well structures absorb light, by factors of up to 10. The improvement results from coupling of diffracted light to waveguide modes of the thin film device structure, and from Fabry-Perot interference effects. Simulations of absorption in these device structures corroborate the measured results and indicate that quantum well solar cells of ~2 µm in thickness, and which are equipped with optimized backside gratings, can achieve 1 Sun Airmass 0 short-circuit current densities of up to ~5 mA/cm2 (15%) greater than GaAs homojunction devices, and of up to >2 mA/cm2 (7%) greater than quantum well devices, with planar back reflectors. A combination of Fabry-Perot interference and diffraction into waveguide modes of the thin devices is shown to dominate the simulated device response spectra. Simulations also demonstrate the importance of low-loss metals for realizing optimal light trapping structures. Such device geometries are promising for reducing the cost of high efficiency solar cells that may be suitable for a variety of traditional and emerging applications.text2012-07-12T13:51:41Z2012-07-12T13:51:41Z2012-052012-07-12May 20122012-07-12T13:52:02Zthesisapplication/pdfhttp://hdl.handle.net/2152/ETD-UT-2012-05-50402152/ETD-UT-2012-05-5040eng
collection NDLTD
language English
format Others
sources NDLTD
topic GaAs
InAs
InGaAs
GaInAs
Solar cell
Photovoltaic
Thin film
Quantum well
Quantum dot
Light trapping
Waveguide
Nanoparticle
Diffraction
Grating
Scattering
spellingShingle GaAs
InAs
InGaAs
GaInAs
Solar cell
Photovoltaic
Thin film
Quantum well
Quantum dot
Light trapping
Waveguide
Nanoparticle
Diffraction
Grating
Scattering
McPheeters, Claiborne Ott
The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cells
description High efficiency photovoltaic solar cells are expected to continue to be important for a variety of terrestrial and space power applications. Solar cells made of optically thick materials often cannot meet the cost, efficiency, or physical requirements for specialized applications and, increasingly, for traditional applications. This dissertation investigates improving the performance of single-junction GaAs solar cells by incorporating InGaAs/GaAs quantum wells and quantum dots to increase their spectral response bandwidth, and by incorporating structures that confine light in the devices to improve their absorption of it. InGaAs/GaAs quantum dots-in-wells extend the response of GaAs homojunction devices to wavelengths >1200 nm. Nanoparticles that are randomly deposited on the top of optically thick devices scatter light into waveguide modes of the device structures, increasing their absorption of electromagnetic energy and improving their short-circuit current by up to 16%. Multiply periodic diffractive structures have been optimized using rigorous software algorithms and fabricated on the back sides of thin film quantum dot-in-well solar cells, improving their spectral response at wavelengths 850 nm to 1200 nm, where only the quantum dot-in-well structures absorb light, by factors of up to 10. The improvement results from coupling of diffracted light to waveguide modes of the thin film device structure, and from Fabry-Perot interference effects. Simulations of absorption in these device structures corroborate the measured results and indicate that quantum well solar cells of ~2 µm in thickness, and which are equipped with optimized backside gratings, can achieve 1 Sun Airmass 0 short-circuit current densities of up to ~5 mA/cm2 (15%) greater than GaAs homojunction devices, and of up to >2 mA/cm2 (7%) greater than quantum well devices, with planar back reflectors. A combination of Fabry-Perot interference and diffraction into waveguide modes of the thin devices is shown to dominate the simulated device response spectra. Simulations also demonstrate the importance of low-loss metals for realizing optimal light trapping structures. Such device geometries are promising for reducing the cost of high efficiency solar cells that may be suitable for a variety of traditional and emerging applications. === text
author McPheeters, Claiborne Ott
author_facet McPheeters, Claiborne Ott
author_sort McPheeters, Claiborne Ott
title The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cells
title_short The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cells
title_full The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cells
title_fullStr The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cells
title_full_unstemmed The application of light trapping structures and of InGaAs/GaAs quantum wells and quantum dots to improving the performance of single-junction GaAs solar cells
title_sort application of light trapping structures and of ingaas/gaas quantum wells and quantum dots to improving the performance of single-junction gaas solar cells
publishDate 2012
url http://hdl.handle.net/2152/ETD-UT-2012-05-5040
work_keys_str_mv AT mcpheetersclaiborneott theapplicationoflighttrappingstructuresandofingaasgaasquantumwellsandquantumdotstoimprovingtheperformanceofsinglejunctiongaassolarcells
AT mcpheetersclaiborneott applicationoflighttrappingstructuresandofingaasgaasquantumwellsandquantumdotstoimprovingtheperformanceofsinglejunctiongaassolarcells
_version_ 1716822461579788288