Proteomic Signatures of Epidermal Growth Factor Receptor Signaling

Analysis of cellular signaling networks typically involves targeted measurements of phosphorylated protein intermediates. However, phosphoproteomic analyses usually require affinity enrichment of phosphopeptides and can be complicated by artifactual changes in phosphorylation caused by uncontrolled...

Full description

Bibliographic Details
Main Author: Myers, Matthew V
Other Authors: Jennifer Pietenpol
Format: Others
Language:en
Published: VANDERBILT 2012
Subjects:
Online Access:http://etd.library.vanderbilt.edu/available/etd-01242012-122721/
id ndltd-VANDERBILT-oai-VANDERBILTETD-etd-01242012-122721
record_format oai_dc
spelling ndltd-VANDERBILT-oai-VANDERBILTETD-etd-01242012-1227212013-01-08T17:16:44Z Proteomic Signatures of Epidermal Growth Factor Receptor Signaling Myers, Matthew V Biochemistry Analysis of cellular signaling networks typically involves targeted measurements of phosphorylated protein intermediates. However, phosphoproteomic analyses usually require affinity enrichment of phosphopeptides and can be complicated by artifactual changes in phosphorylation caused by uncontrolled preanalytical variables, particularly in the analysis of tissue specimens. I hypothesized that changes in protein expression, which are more stable and easily analyzed, could reflect network stimulation and inhibition. This approach was employed to analyze stimulation and inhibition of the epidermal growth factor receptor (EGFR) by EGF and selective EGFR inhibitors. Shotgun analysis of proteomes from proliferating A431 cells, EGF-stimulated cells and cells co-treated with the EGFR inhibitors cetuximab or gefitinib identified groups of differentially expressed proteins. Comparisons of these protein groups identified 13 proteins whose EGF-induced expression changes were reversed by both EGFR inhibitors. Targeted multiple- reaction-monitoring (MRM) analysis verified differential expression of 12 of these proteins, which comprise a candidate EGFR inhibition signature. I then tested these 12 proteins by MRM analysis in 3 other models: 1) a comparison of DiFi (EGFR inhibitor-sensitive) and HCT116 (EGFR-insensitive) cell lines, 2) in formalin-fixed, paraffin-embedded (FFPE) mouse xenograft DiFi and HCT116 tumors, and 3) in tissue biopsies from a patient with the gastric hyperproliferative disorder Ménétriers disease, who was treated with cetuximab. Of the proteins in the candidate signature, a core group, including c-Jun, jagged-1, and claudin 4 were decreased by EGFR inhibitors in all three models. Although the goal of these studies was not to validate a clinically-useful EGFR inhibition signature, the results confirm the hypothesis and outline a prototypical approach to derive and test protein expression signatures for drug action on signaling networks. A secondary goal of this research was to apply a new method to quantify protein modification changes to EGFR using internal reference peptides (IRP). The major focus of this work was to assess the performance of this newly developed MS-based quantitation method to detect phosphorylation changes on EGFR by comparing the performance characteristics to stable isotope dilution (SID) methods. Initial studies are presented along with suggestions for future studies using overall findings in this dissertation. Jennifer Pietenpol Carlos Arteaga Graham Carpenter Daniel C. Liebler Robert Coffey VANDERBILT 2012-01-25 text application/pdf http://etd.library.vanderbilt.edu/available/etd-01242012-122721/ http://etd.library.vanderbilt.edu/available/etd-01242012-122721/ en unrestricted I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.
collection NDLTD
language en
format Others
sources NDLTD
topic Biochemistry
spellingShingle Biochemistry
Myers, Matthew V
Proteomic Signatures of Epidermal Growth Factor Receptor Signaling
description Analysis of cellular signaling networks typically involves targeted measurements of phosphorylated protein intermediates. However, phosphoproteomic analyses usually require affinity enrichment of phosphopeptides and can be complicated by artifactual changes in phosphorylation caused by uncontrolled preanalytical variables, particularly in the analysis of tissue specimens. I hypothesized that changes in protein expression, which are more stable and easily analyzed, could reflect network stimulation and inhibition. This approach was employed to analyze stimulation and inhibition of the epidermal growth factor receptor (EGFR) by EGF and selective EGFR inhibitors. Shotgun analysis of proteomes from proliferating A431 cells, EGF-stimulated cells and cells co-treated with the EGFR inhibitors cetuximab or gefitinib identified groups of differentially expressed proteins. Comparisons of these protein groups identified 13 proteins whose EGF-induced expression changes were reversed by both EGFR inhibitors. Targeted multiple- reaction-monitoring (MRM) analysis verified differential expression of 12 of these proteins, which comprise a candidate EGFR inhibition signature. I then tested these 12 proteins by MRM analysis in 3 other models: 1) a comparison of DiFi (EGFR inhibitor-sensitive) and HCT116 (EGFR-insensitive) cell lines, 2) in formalin-fixed, paraffin-embedded (FFPE) mouse xenograft DiFi and HCT116 tumors, and 3) in tissue biopsies from a patient with the gastric hyperproliferative disorder Ménétriers disease, who was treated with cetuximab. Of the proteins in the candidate signature, a core group, including c-Jun, jagged-1, and claudin 4 were decreased by EGFR inhibitors in all three models. Although the goal of these studies was not to validate a clinically-useful EGFR inhibition signature, the results confirm the hypothesis and outline a prototypical approach to derive and test protein expression signatures for drug action on signaling networks. A secondary goal of this research was to apply a new method to quantify protein modification changes to EGFR using internal reference peptides (IRP). The major focus of this work was to assess the performance of this newly developed MS-based quantitation method to detect phosphorylation changes on EGFR by comparing the performance characteristics to stable isotope dilution (SID) methods. Initial studies are presented along with suggestions for future studies using overall findings in this dissertation.
author2 Jennifer Pietenpol
author_facet Jennifer Pietenpol
Myers, Matthew V
author Myers, Matthew V
author_sort Myers, Matthew V
title Proteomic Signatures of Epidermal Growth Factor Receptor Signaling
title_short Proteomic Signatures of Epidermal Growth Factor Receptor Signaling
title_full Proteomic Signatures of Epidermal Growth Factor Receptor Signaling
title_fullStr Proteomic Signatures of Epidermal Growth Factor Receptor Signaling
title_full_unstemmed Proteomic Signatures of Epidermal Growth Factor Receptor Signaling
title_sort proteomic signatures of epidermal growth factor receptor signaling
publisher VANDERBILT
publishDate 2012
url http://etd.library.vanderbilt.edu/available/etd-01242012-122721/
work_keys_str_mv AT myersmatthewv proteomicsignaturesofepidermalgrowthfactorreceptorsignaling
_version_ 1716533249200619520