Methods for controlling two European Honey bee (Apis mellifera L.) pests:  Varroa mites (Varroa destructor, Anderson and Trueman) And Small hive beetles (Aethina tumida)

Throughout the last five decades, European Honey bee (Apis mellifera) colonies have been heavily damaged by invading Varroa mites (Varroa destructor), and, more recently, small hive beetles (Aethina tumida). These pests infest A. mellifera colonies throughout Virginia, with V. destructor feeding upo...

Full description

Bibliographic Details
Main Author: Roth, Morgan Alicia
Other Authors: Entomology
Format: Others
Published: Virginia Tech 2020
Subjects:
Online Access:http://hdl.handle.net/10919/100994
Description
Summary:Throughout the last five decades, European Honey bee (Apis mellifera) colonies have been heavily damaged by invading Varroa mites (Varroa destructor), and, more recently, small hive beetles (Aethina tumida). These pests infest A. mellifera colonies throughout Virginia, with V. destructor feeding upon the lipids of their hosts and spreading viruses, and A. tumida feeding extensively on hive products and brood. Because V. destructor has historically demonstrated acaricide resistance, this study examined V. destructor resistance to three common acaricides (amitraz, coumaphos, and tau-fluvalinate) throughout the three geographic regions of Virginia using glass vial contact bioassays; the results showed no resistance in the sites tested. To gain better insights into A. tumida pharmacology, several known acetylcholinesterase (AChE) inhibitors and three novel insecticides (previously shown to have low mammalian toxicity) were tested against an A. tumida laboratory colony through in vivo and in vitro bioassays. The results of these bioassays indicated that coumaphos was most selective and topically effective against A. tumida, while only one experimental compound was selective against A. tumida, with 29-fold less potency than coumaphos. These results can help apiculturists in making informed pest management choices and can lead to future studies further examining V. destructor resistance and optimizing A. tumida insecticide treatments. === Master of Science in Life Sciences