Development and Design of Self-Sensing SMAs using Thermoelectric Effect
Active research of SMAs has shown that its Seebeck coefficient is sensitive to its martensitic phase transformation and has the potential to determine the SMAs state of transformation. The combination of Shape Memory Alloys, which have a positive Seebeck coefficient, and Constantan which has a negat...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/33407 http://scholar.lib.vt.edu/theses/available/etd-06032013-114013/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-33407 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-334072020-09-26T05:35:22Z Development and Design of Self-Sensing SMAs using Thermoelectric Effect Malladi, Vijaya Venkata Narasimha Sriram Mechanical Engineering Tarazaga, Pablo Alberto Kurdila, Andrew J. Inman, Daniel J. ANN Postion Control ANFIS Seebeck Coefficient Thermoelectric Effects Sensorless Control Shape Memory Alloys Active research of SMAs has shown that its Seebeck coefficient is sensitive to its martensitic phase transformation and has the potential to determine the SMAs state of transformation. The combination of Shape Memory Alloys, which have a positive Seebeck coefficient, and Constantan which has a negative Seebeck coefficient (-35 mV/K) results in a thermocouple capable of measuring temperature. The work presented in this thesis is based on the development and design of this sensor. This sensor is used to study the hysteretic behaviour of SMAs. Although Shape Memory Alloys (SMAs) exhibit a myriad of nonlinearities, SMAs show two major types of nonlinear hysteresis. During cyclic loading of the SMAs, it is observed that one type of hysteretic behavior depends on the rate of heating the SMAs, whilst the variation of maximum temperature of an SMA in each cycle results in the other hysteretic behavior. This later hysteretic behavior gives rise to major and minor nonlinear loops of SMAs. The present work analyzes the nonlinearities of hysteretic envelopes which gives the different maximum temperatures reached for each hysteretic cycle with respect to stress and strain of the SMA. This work then models this behavior using Adaptive Neuro Fuzzy Inference System (ANFIS) and compares it to experimental results. The nonlinear learning and adaptation of ANFIS architecture makes it suitable to model the temperature path hysteresis of SMAs. Master of Science 2014-03-14T20:39:18Z 2014-03-14T20:39:18Z 2013-05-20 2013-06-03 2013-06-17 2013-06-17 Thesis etd-06032013-114013 http://hdl.handle.net/10919/33407 http://scholar.lib.vt.edu/theses/available/etd-06032013-114013/ Malladi_VVNS_T_2013_version3.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
ANN Postion Control ANFIS Seebeck Coefficient Thermoelectric Effects Sensorless Control Shape Memory Alloys |
spellingShingle |
ANN Postion Control ANFIS Seebeck Coefficient Thermoelectric Effects Sensorless Control Shape Memory Alloys Malladi, Vijaya Venkata Narasimha Sriram Development and Design of Self-Sensing SMAs using Thermoelectric Effect |
description |
Active research of SMAs has shown that its Seebeck coefficient is sensitive to its martensitic phase transformation and has the potential to determine the SMAs state of transformation. The combination of Shape Memory Alloys, which have a positive Seebeck coefficient, and Constantan which has a negative Seebeck coefficient (-35 mV/K) results in a thermocouple capable of measuring temperature. The work presented in this thesis is based on the development and design of this sensor.
This sensor is used to study the hysteretic behaviour of SMAs. Although Shape Memory Alloys (SMAs) exhibit a myriad of nonlinearities, SMAs show two major types of nonlinear hysteresis. During cyclic loading of the SMAs, it is observed that one type of hysteretic behavior depends on the rate of heating the SMAs, whilst the variation of maximum temperature of an SMA in each cycle results in the other hysteretic behavior. This later hysteretic behavior gives rise to major and minor nonlinear loops of SMAs. The present work analyzes the nonlinearities of hysteretic envelopes which gives the different maximum temperatures reached for each hysteretic cycle with respect to stress and strain of the SMA. This work then models this behavior using Adaptive Neuro Fuzzy Inference System (ANFIS) and compares it to experimental results. The nonlinear learning and adaptation of ANFIS architecture makes it suitable to model the temperature path hysteresis of SMAs. === Master of Science |
author2 |
Mechanical Engineering |
author_facet |
Mechanical Engineering Malladi, Vijaya Venkata Narasimha Sriram |
author |
Malladi, Vijaya Venkata Narasimha Sriram |
author_sort |
Malladi, Vijaya Venkata Narasimha Sriram |
title |
Development and Design of Self-Sensing SMAs using Thermoelectric Effect |
title_short |
Development and Design of Self-Sensing SMAs using Thermoelectric Effect |
title_full |
Development and Design of Self-Sensing SMAs using Thermoelectric Effect |
title_fullStr |
Development and Design of Self-Sensing SMAs using Thermoelectric Effect |
title_full_unstemmed |
Development and Design of Self-Sensing SMAs using Thermoelectric Effect |
title_sort |
development and design of self-sensing smas using thermoelectric effect |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/33407 http://scholar.lib.vt.edu/theses/available/etd-06032013-114013/ |
work_keys_str_mv |
AT malladivijayavenkatanarasimhasriram developmentanddesignofselfsensingsmasusingthermoelectriceffect |
_version_ |
1719341931854561280 |