Evaluating the Effectiveness of Population Reconstruction for Black Bear (Ursus americanus) and White-Tailed Deer (Odocoileus virginianus) Population Management

This study was a comprehensive evaluation of population reconstruction techniques. Population reconstruction techniques are population estimation methods that calculate a minimum population size based on age-specific harvest data (Downing 1980, Roseberry and Woolf 1991). Population reconstruction...

Full description

Bibliographic Details
Main Author: Tilton, Mary Kathryn
Other Authors: Fisheries and Wildlife Sciences
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/35455
http://scholar.lib.vt.edu/theses/available/etd-10212005-101252/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-35455
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-354552020-09-26T05:37:42Z Evaluating the Effectiveness of Population Reconstruction for Black Bear (Ursus americanus) and White-Tailed Deer (Odocoileus virginianus) Population Management Tilton, Mary Kathryn Fisheries and Wildlife Sciences Kelly, Marcella J. Berkson, James M. Vaughan, Michael R. black bear White-tailed deer harvest management model Downing reconstruction population dynamics population reconstruction This study was a comprehensive evaluation of population reconstruction techniques. Population reconstruction techniques are population estimation methods that calculate a minimum population size based on age-specific harvest data (Downing 1980, Roseberry and Woolf 1991). Population reconstruction techniques share the following characteristics: 1) utilization of catch-at-age data and 2) backward addition of cohorts to estimate a minimum population size. I developed a questionnaire to survey the biologists participating in this survey to determine the most common reconstruction technique used to estimate population sizes of exploited white-tailed deer (Odocoileus virginianus) and black bear (Ursus americanus). Downing reconstruction (Downing 1980) was the most commonly used reconstruction technique among biologists participating in this study. Based on a comprehensive literature review and discussions with state biologists, I decided to evaluate virtual reconstruction (Roseberry and Woolf 1991) and develop a new reconstruction technique: Reverse Order reconstruction. I developed a quantitative population model in Microsoft Visual Basic 6.0 to evaluate the ability of the 3 reconstruction techniques to estimate population sizes given a variety of conditions. I evaluated the effects of stochasticity on reconstruction population estimates by incorporating different levels of environmental stochasticity (i.e. process error) and measurement error in the generated or "known" population. I also evaluated the effects of collapsing age classes and aging biases on population estimates. In all conditions, Downing and virtual reconstruction were underestimates of the actual population size. Reverse Order reconstruction more closely estimated the actual population size, but is also more data-intensive than the other 2 methods. Measurement error introduces more uncertainty in the reconstructed population estimates than does process error. The population simulation model proved that Downing and virtual reconstruction are consistently underestimates and the percent underestimation is due to lack of inclusion of a natural mortality rates in population estimation. I used the results of the questionnaire to characterize the harvest datasets of the states participating in this study. From these results, I chose two harvest datasets to further analyze: a white-tailed deer harvest dataset from North Carolina and a black bear harvest dataset from Pennsylvania. I analyzed these datasets with Downing and virtual reconstruction. I also applied the quantitative population model to these datasets to evaluate the effect of increasing levels of measurement error on the variance of the population estimates. I found that Downing and virtual reconstruction estimated the population sizes very closely to one another, within 5%, for both datasets, and the reconstructed estimates closely tracked the actual harvest numbers. I also found that increasing levels of measurement error increased the variance associated with reconstructed population estimates and may decrease the ability of these techniques to accurately capture population trends. Master of Science 2014-03-14T20:46:55Z 2014-03-14T20:46:55Z 2005-09-14 2005-10-21 2005-11-11 2005-11-11 Thesis etd-10212005-101252 http://hdl.handle.net/10919/35455 http://scholar.lib.vt.edu/theses/available/etd-10212005-101252/ TILTON_thesis2.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic black bear
White-tailed deer
harvest management
model
Downing reconstruction
population dynamics
population reconstruction
spellingShingle black bear
White-tailed deer
harvest management
model
Downing reconstruction
population dynamics
population reconstruction
Tilton, Mary Kathryn
Evaluating the Effectiveness of Population Reconstruction for Black Bear (Ursus americanus) and White-Tailed Deer (Odocoileus virginianus) Population Management
description This study was a comprehensive evaluation of population reconstruction techniques. Population reconstruction techniques are population estimation methods that calculate a minimum population size based on age-specific harvest data (Downing 1980, Roseberry and Woolf 1991). Population reconstruction techniques share the following characteristics: 1) utilization of catch-at-age data and 2) backward addition of cohorts to estimate a minimum population size. I developed a questionnaire to survey the biologists participating in this survey to determine the most common reconstruction technique used to estimate population sizes of exploited white-tailed deer (Odocoileus virginianus) and black bear (Ursus americanus). Downing reconstruction (Downing 1980) was the most commonly used reconstruction technique among biologists participating in this study. Based on a comprehensive literature review and discussions with state biologists, I decided to evaluate virtual reconstruction (Roseberry and Woolf 1991) and develop a new reconstruction technique: Reverse Order reconstruction. I developed a quantitative population model in Microsoft Visual Basic 6.0 to evaluate the ability of the 3 reconstruction techniques to estimate population sizes given a variety of conditions. I evaluated the effects of stochasticity on reconstruction population estimates by incorporating different levels of environmental stochasticity (i.e. process error) and measurement error in the generated or "known" population. I also evaluated the effects of collapsing age classes and aging biases on population estimates. In all conditions, Downing and virtual reconstruction were underestimates of the actual population size. Reverse Order reconstruction more closely estimated the actual population size, but is also more data-intensive than the other 2 methods. Measurement error introduces more uncertainty in the reconstructed population estimates than does process error. The population simulation model proved that Downing and virtual reconstruction are consistently underestimates and the percent underestimation is due to lack of inclusion of a natural mortality rates in population estimation. I used the results of the questionnaire to characterize the harvest datasets of the states participating in this study. From these results, I chose two harvest datasets to further analyze: a white-tailed deer harvest dataset from North Carolina and a black bear harvest dataset from Pennsylvania. I analyzed these datasets with Downing and virtual reconstruction. I also applied the quantitative population model to these datasets to evaluate the effect of increasing levels of measurement error on the variance of the population estimates. I found that Downing and virtual reconstruction estimated the population sizes very closely to one another, within 5%, for both datasets, and the reconstructed estimates closely tracked the actual harvest numbers. I also found that increasing levels of measurement error increased the variance associated with reconstructed population estimates and may decrease the ability of these techniques to accurately capture population trends. === Master of Science
author2 Fisheries and Wildlife Sciences
author_facet Fisheries and Wildlife Sciences
Tilton, Mary Kathryn
author Tilton, Mary Kathryn
author_sort Tilton, Mary Kathryn
title Evaluating the Effectiveness of Population Reconstruction for Black Bear (Ursus americanus) and White-Tailed Deer (Odocoileus virginianus) Population Management
title_short Evaluating the Effectiveness of Population Reconstruction for Black Bear (Ursus americanus) and White-Tailed Deer (Odocoileus virginianus) Population Management
title_full Evaluating the Effectiveness of Population Reconstruction for Black Bear (Ursus americanus) and White-Tailed Deer (Odocoileus virginianus) Population Management
title_fullStr Evaluating the Effectiveness of Population Reconstruction for Black Bear (Ursus americanus) and White-Tailed Deer (Odocoileus virginianus) Population Management
title_full_unstemmed Evaluating the Effectiveness of Population Reconstruction for Black Bear (Ursus americanus) and White-Tailed Deer (Odocoileus virginianus) Population Management
title_sort evaluating the effectiveness of population reconstruction for black bear (ursus americanus) and white-tailed deer (odocoileus virginianus) population management
publisher Virginia Tech
publishDate 2014
url http://hdl.handle.net/10919/35455
http://scholar.lib.vt.edu/theses/available/etd-10212005-101252/
work_keys_str_mv AT tiltonmarykathryn evaluatingtheeffectivenessofpopulationreconstructionforblackbearursusamericanusandwhitetaileddeerodocoileusvirginianuspopulationmanagement
_version_ 1719342444787531776