Magneto-Elastic Interactions in a Cracked Ferromagnetic Body

The stress-strain state of ferromagnetic plane with a moving crack has been investigated in this study. The model considers a soft magnetic ferroelastic body and incorporates a realistic (nonlinear) susceptibility. A moving crack is present in the body and is propagating in a direction perpendicular...

Full description

Bibliographic Details
Main Author: Harutyunyan, Satenik
Other Authors: Materials Science and Engineering
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/46199
http://scholar.lib.vt.edu/theses/available/etd-12132006-022128/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-46199
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-461992020-09-29T05:48:13Z Magneto-Elastic Interactions in a Cracked Ferromagnetic Body Harutyunyan, Satenik Materials Science and Engineering Reynolds, William T. Jr. Hasanyan, Davresh Wang, Yu Ferromagnetic Crack Nonlinear Law of Magnetization Magnetoelasticity The stress-strain state of ferromagnetic plane with a moving crack has been investigated in this study. The model considers a soft magnetic ferroelastic body and incorporates a realistic (nonlinear) susceptibility. A moving crack is present in the body and is propagating in a direction perpendicular to the magnetic field. Assuming that the processes in the moving coordinates are stationary, a Fourier transform method is used to reduce the mixed boundary value problem to the solutions of a pair of dual integral equations yielding to a closed form solution. As a result of this investigation, the magnetoelastic stress intensity factor is obtained and its dependency upon the crack velocity, material constants and nonlinear law of magnetization are highlighted. It has been shown that stress result around the crack essentially depend on external magnetic field, speed of the moving crack, nonlinear law of magnetization, and other physical parameters. The results presented in this work show that when cracked ferromagnetic structure is under the influence of magnetic field it is necessary to take into account the interaction effects between deformation of the body and magnetic field and that such interaction can bring to a new conditions for strengthening the materials. Closed form solutions for the stress-strain state are obtained, graphical representations are supplied and conclusions and prospects for further developments are outlined. Master of Science 2014-03-14T21:51:23Z 2014-03-14T21:51:23Z 2006-11-30 2006-12-13 2007-01-12 2007-01-12 Thesis etd-12132006-022128 http://hdl.handle.net/10919/46199 http://scholar.lib.vt.edu/theses/available/etd-12132006-022128/ SatenikThesis1.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic Ferromagnetic
Crack
Nonlinear Law of Magnetization
Magnetoelasticity
spellingShingle Ferromagnetic
Crack
Nonlinear Law of Magnetization
Magnetoelasticity
Harutyunyan, Satenik
Magneto-Elastic Interactions in a Cracked Ferromagnetic Body
description The stress-strain state of ferromagnetic plane with a moving crack has been investigated in this study. The model considers a soft magnetic ferroelastic body and incorporates a realistic (nonlinear) susceptibility. A moving crack is present in the body and is propagating in a direction perpendicular to the magnetic field. Assuming that the processes in the moving coordinates are stationary, a Fourier transform method is used to reduce the mixed boundary value problem to the solutions of a pair of dual integral equations yielding to a closed form solution. As a result of this investigation, the magnetoelastic stress intensity factor is obtained and its dependency upon the crack velocity, material constants and nonlinear law of magnetization are highlighted. It has been shown that stress result around the crack essentially depend on external magnetic field, speed of the moving crack, nonlinear law of magnetization, and other physical parameters. The results presented in this work show that when cracked ferromagnetic structure is under the influence of magnetic field it is necessary to take into account the interaction effects between deformation of the body and magnetic field and that such interaction can bring to a new conditions for strengthening the materials. Closed form solutions for the stress-strain state are obtained, graphical representations are supplied and conclusions and prospects for further developments are outlined. === Master of Science
author2 Materials Science and Engineering
author_facet Materials Science and Engineering
Harutyunyan, Satenik
author Harutyunyan, Satenik
author_sort Harutyunyan, Satenik
title Magneto-Elastic Interactions in a Cracked Ferromagnetic Body
title_short Magneto-Elastic Interactions in a Cracked Ferromagnetic Body
title_full Magneto-Elastic Interactions in a Cracked Ferromagnetic Body
title_fullStr Magneto-Elastic Interactions in a Cracked Ferromagnetic Body
title_full_unstemmed Magneto-Elastic Interactions in a Cracked Ferromagnetic Body
title_sort magneto-elastic interactions in a cracked ferromagnetic body
publisher Virginia Tech
publishDate 2014
url http://hdl.handle.net/10919/46199
http://scholar.lib.vt.edu/theses/available/etd-12132006-022128/
work_keys_str_mv AT harutyunyansatenik magnetoelasticinteractionsinacrackedferromagneticbody
_version_ 1719346568049459200