Reconstruction of Orthogonal Polyhedra

In this thesis I study reconstruction of orthogonal polyhedral surfaces and orthogonal polyhedra from partial information about their boundaries. There are three main questions for which I provide novel results. The first question is "Given the dual graph, facial angles and edge lengths of...

Full description

Bibliographic Details
Main Author: Genc, Burkay
Language:en
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/10012/3588
Description
Summary:In this thesis I study reconstruction of orthogonal polyhedral surfaces and orthogonal polyhedra from partial information about their boundaries. There are three main questions for which I provide novel results. The first question is "Given the dual graph, facial angles and edge lengths of an orthogonal polyhedral surface or polyhedron, is it possible to reconstruct the dihedral angles?" The second question is "Given the dual graph, dihedral angles and edge lengths of an orthogonal polyhedral surface or polyhedron, is it possible to reconstruct the facial angles?" The third question is "Given the vertex coordinates of an orthogonal polyhedral surface or polyhedron, is it possible to reconstruct the edges and faces, possibly after rotating?" For the first two questions, I show that the answer is "yes" for genus-0 orthogonal polyhedra and polyhedral surfaces under some restrictions, and provide linear time algorithms. For the third question, I provide results and algorithms for orthogonally convex polyhedra. Many related problems are studied as well.