A numerical method for solving certain nonlinear integral equations arising in age-structured populations dynamics.

In this thesis we study the existence and stability of positive equilibrium of a general model for the dynamics of several interacting, age-structured population. We begin with the formulation and proof of a global existence theorem for the initial value problem. The proof of this theorem is used to...

Full description

Bibliographic Details
Main Author: Alawneh, Zakaria Mohammad.
Other Authors: Cushing, Jim M.
Language:en
Published: The University of Arizona. 1990
Subjects:
Online Access:http://hdl.handle.net/10150/184984
Description
Summary:In this thesis we study the existence and stability of positive equilibrium of a general model for the dynamics of several interacting, age-structured population. We begin with the formulation and proof of a global existence theorem for the initial value problem. The proof of this theorem is used to develop an algorithm and a FORTRAN code for the numerical solution of initial value problems for the single species case. This computer program is used to study prototype models for the dynamics of a population whose fertility and mortality rates exhibit an "Allee effect". This is done from a bifurcation theoretic point of view, using the inherent net reproductive rate as a bifurcating parameter. An unstable "left" bifurcation is found. Multi-equilibria and various kinds of oscillations are studied as a function of r, the fertility window, and the nature of the density dependence.