Influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings.

Short term root temperature treatments between 15 to 40°C at a constant air temperature produced a differential response in shoot growth of barley and sorghum seedlings. Maximum growth rate occurred at 25°C in barley and 35°C in sorghum. The stimulation of growth in barley in the suboptimal temperat...

Full description

Bibliographic Details
Main Author: BassiriRad, Hormoz.
Other Authors: Radin, John
Language:en
Published: The University of Arizona. 1990
Subjects:
Online Access:http://hdl.handle.net/10150/185129
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-185129
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-1851292015-10-23T04:30:49Z Influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings. BassiriRad, Hormoz. Radin, John O'Leary, James Strehlein, Jack Matthias, Allan Briggs, Robert Biology Agriculture. Short term root temperature treatments between 15 to 40°C at a constant air temperature produced a differential response in shoot growth of barley and sorghum seedlings. Maximum growth rate occurred at 25°C in barley and 35°C in sorghum. The stimulation of growth in barley in the suboptimal temperature ranges (15 to 25°C) was associated with both enhanced L(p) and Jᵢ whereas growth inhibition at elevated temperatures (>25°C) was associated with no changes in L(p), but was accompanied by a severe inhibition of solute fluxes suggesting that supraoptimal temperature inhibition of growth in barley is caused by limited ion and not water supply to the leaves. In sorghum, the enhanced shoot growth in the 15 to 25°C range coincided with stimulated L(p) and Jᵢ. Between 25 to 35° temperature induced enhancement of growth was mainly caused by enhanced L(p). In both plants even when root L(p) appeared to cause temperature induced changes in growth, the bulk leaf water, osmotic and turgor potential remained unaffected. It is suggested that when reduced water supply limits growth, undetectable changes in xylem water potential may mediate temperature response in root L(p) and growth. Temperature effects on ion transport across the root were found to be regulated at the site of ion release into the xylem (Φ(cx)) rather than the site of ion entry into the root (Φ(oc)). When ABA was added to the external solution, L(p) was enhanced but qualitative responses of Jᵢ and L(p) to changes in root temperature remained unchanged in barley. However, addition of ABA to the medium with sorghum roots caused a severe inhibition of solute fluxes at temperatures above 25°C which happened only when the temperature was raised above 35°C in the absence of ABA. The ABA study suggested that temperature induced changes in root transport properties of both plants were not mediated by ABA. 1990 text Dissertation-Reproduction (electronic) http://hdl.handle.net/10150/185129 708645939 9100547 en Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. The University of Arizona.
collection NDLTD
language en
sources NDLTD
topic Biology
Agriculture.
spellingShingle Biology
Agriculture.
BassiriRad, Hormoz.
Influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings.
description Short term root temperature treatments between 15 to 40°C at a constant air temperature produced a differential response in shoot growth of barley and sorghum seedlings. Maximum growth rate occurred at 25°C in barley and 35°C in sorghum. The stimulation of growth in barley in the suboptimal temperature ranges (15 to 25°C) was associated with both enhanced L(p) and Jᵢ whereas growth inhibition at elevated temperatures (>25°C) was associated with no changes in L(p), but was accompanied by a severe inhibition of solute fluxes suggesting that supraoptimal temperature inhibition of growth in barley is caused by limited ion and not water supply to the leaves. In sorghum, the enhanced shoot growth in the 15 to 25°C range coincided with stimulated L(p) and Jᵢ. Between 25 to 35° temperature induced enhancement of growth was mainly caused by enhanced L(p). In both plants even when root L(p) appeared to cause temperature induced changes in growth, the bulk leaf water, osmotic and turgor potential remained unaffected. It is suggested that when reduced water supply limits growth, undetectable changes in xylem water potential may mediate temperature response in root L(p) and growth. Temperature effects on ion transport across the root were found to be regulated at the site of ion release into the xylem (Φ(cx)) rather than the site of ion entry into the root (Φ(oc)). When ABA was added to the external solution, L(p) was enhanced but qualitative responses of Jᵢ and L(p) to changes in root temperature remained unchanged in barley. However, addition of ABA to the medium with sorghum roots caused a severe inhibition of solute fluxes at temperatures above 25°C which happened only when the temperature was raised above 35°C in the absence of ABA. The ABA study suggested that temperature induced changes in root transport properties of both plants were not mediated by ABA.
author2 Radin, John
author_facet Radin, John
BassiriRad, Hormoz.
author BassiriRad, Hormoz.
author_sort BassiriRad, Hormoz.
title Influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings.
title_short Influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings.
title_full Influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings.
title_fullStr Influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings.
title_full_unstemmed Influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings.
title_sort influence of temperature on root water and ion transport and the subsequent effect on shoot water status and growth of barley and sorghum seedlings.
publisher The University of Arizona.
publishDate 1990
url http://hdl.handle.net/10150/185129
work_keys_str_mv AT bassiriradhormoz influenceoftemperatureonrootwaterandiontransportandthesubsequenteffectonshootwaterstatusandgrowthofbarleyandsorghumseedlings
_version_ 1718097554863816704