Cholecalciferol Protects Against Deoxycholic Acid-Induced Loss of EphB2 in Human Colorectal Cancer Cells

Research has identified a linear relationship between saturated fat intake and colon cancer, and has demonstrated that high fat diets enhance tumorigenesis through elevation of secondary bile acids such as deoxycholic acid (DCA). We and others have shown that DCA can manipulate cell adhesion by decr...

Full description

Bibliographic Details
Main Author: Comer, Shawna Beth
Other Authors: Meuillet, Emmanuelle J.
Language:EN
Published: The University of Arizona. 2007
Subjects:
Online Access:http://hdl.handle.net/10150/193312
Description
Summary:Research has identified a linear relationship between saturated fat intake and colon cancer, and has demonstrated that high fat diets enhance tumorigenesis through elevation of secondary bile acids such as deoxycholic acid (DCA). We and others have shown that DCA can manipulate cell adhesion by decreasing expression of E-cadherin and increasing expression of beta-catenin. We have also shown that DCA significantly reduces EphB2 expression, which regulates cell positioning and segregation. Importantly, vitamin D can reinstate membranous E-cadherin/beta-catenin interactions and increase E-cadherin expression. In the present study, we sought to analyze the effects of DCA and vitamin D (cholecalciferol) treatment on EphB2 in colorectal cancer cells. Pre-treatment with cholecalciferol restored EphB2 expression in a dose-dependent manner, even with combined DCA treatment. This observation may be EGFR-dependent, suggesting that cholecalciferol may antagonize the effects of DCA. Taken together, these results suggest that cholecalciferol may represent an adjuvant therapy for colorectal cancer patients.