LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE

We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH(IR) > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average...

Full description

Bibliographic Details
Main Authors: Bezanson, Rachel, Wake, David A., Brammer, Gabriel B., Dokkum, Pieter G. van, Franx, Marijn, Labbé, Ivo, Leja, Joel, Momcheva, Ivelina G., Nelson, Erica J., Quadri, Ryan F., Skelton, Rosalind E., Weiner, Benjamin J., Whitaker, Katherine E.
Other Authors: Univ Arizona, Dept Astron, Steward Observ
Language:en
Published: IOP PUBLISHING LTD 2016
Subjects:
Online Access:http://hdl.handle.net/10150/621218
http://arizona.openrepository.com/arizona/handle/10150/621218
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-621218
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-6212182016-11-04T03:00:33Z LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE Bezanson, Rachel Wake, David A. Brammer, Gabriel B. Dokkum, Pieter G. van Franx, Marijn Labbé, Ivo Leja, Joel Momcheva, Ivelina G. Nelson, Erica J. Quadri, Ryan F. Skelton, Rosalind E. Weiner, Benjamin J. Whitaker, Katherine E. Univ Arizona, Dept Astron, Steward Observ galaxies: evolution galaxies: high-redshift galaxies: photometry techniques: photometric We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH(IR) > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 +/- 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1 sigma scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z. <. 2.5 (for JH(IR) < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to similar to 0.1 (1+ z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to similar to 30% more scatter and similar to 5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to similar to 0.046 (1 + z) at H-F160W = 26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of similar to 1.1 - 1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys. 2016-05-02 Article LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE 2016, 822 (1):30 The Astrophysical Journal 1538-4357 10.3847/0004-637X/822/1/30 http://hdl.handle.net/10150/621218 http://arizona.openrepository.com/arizona/handle/10150/621218 The Astrophysical Journal en http://stacks.iop.org/0004-637X/822/i=1/a=30?key=crossref.108f25d7ea8577d169e085796c86495e © 2016. The American Astronomical Society. All rights reserved. IOP PUBLISHING LTD
collection NDLTD
language en
sources NDLTD
topic galaxies: evolution
galaxies: high-redshift
galaxies: photometry
techniques: photometric
spellingShingle galaxies: evolution
galaxies: high-redshift
galaxies: photometry
techniques: photometric
Bezanson, Rachel
Wake, David A.
Brammer, Gabriel B.
Dokkum, Pieter G. van
Franx, Marijn
Labbé, Ivo
Leja, Joel
Momcheva, Ivelina G.
Nelson, Erica J.
Quadri, Ryan F.
Skelton, Rosalind E.
Weiner, Benjamin J.
Whitaker, Katherine E.
LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE
description We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH(IR) > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 +/- 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1 sigma scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z. <. 2.5 (for JH(IR) < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to similar to 0.1 (1+ z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to similar to 30% more scatter and similar to 5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to similar to 0.046 (1 + z) at H-F160W = 26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of similar to 1.1 - 1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.
author2 Univ Arizona, Dept Astron, Steward Observ
author_facet Univ Arizona, Dept Astron, Steward Observ
Bezanson, Rachel
Wake, David A.
Brammer, Gabriel B.
Dokkum, Pieter G. van
Franx, Marijn
Labbé, Ivo
Leja, Joel
Momcheva, Ivelina G.
Nelson, Erica J.
Quadri, Ryan F.
Skelton, Rosalind E.
Weiner, Benjamin J.
Whitaker, Katherine E.
author Bezanson, Rachel
Wake, David A.
Brammer, Gabriel B.
Dokkum, Pieter G. van
Franx, Marijn
Labbé, Ivo
Leja, Joel
Momcheva, Ivelina G.
Nelson, Erica J.
Quadri, Ryan F.
Skelton, Rosalind E.
Weiner, Benjamin J.
Whitaker, Katherine E.
author_sort Bezanson, Rachel
title LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE
title_short LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE
title_full LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE
title_fullStr LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE
title_full_unstemmed LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE
title_sort leveraging 3d-hst grism redshifts to quantify photometric redshift performance
publisher IOP PUBLISHING LTD
publishDate 2016
url http://hdl.handle.net/10150/621218
http://arizona.openrepository.com/arizona/handle/10150/621218
work_keys_str_mv AT bezansonrachel leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT wakedavida leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT brammergabrielb leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT dokkumpietergvan leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT franxmarijn leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT labbeivo leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT lejajoel leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT momchevaivelinag leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT nelsonericaj leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT quadriryanf leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT skeltonrosalinde leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT weinerbenjaminj leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
AT whitakerkatherinee leveraging3dhstgrismredshiftstoquantifyphotometricredshiftperformance
_version_ 1718391239713226752