Advanced structural design for precision radial velocity instruments

The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection...

Full description

Bibliographic Details
Main Authors: Baldwin, Dan, Szentgyorgyi, Andrew, Barnes, Stuart, Bean, Jacob, Ben-Ami, Sagi, Brennan, Patricia, Budynkiewicz, Jamie, Chun, Moo-Young, Conroy, Charlie, Crane, Jeffrey D., Epps, Harland, Evans, Ian, Evans, Janet, Foster, Jeff, Frebel, Anna, Gauron, Thomas, Guzman, Dani, Hare, Tyson, Jang, Bi-Ho, Jang, Jeong-Gyun, Jordan, Andres, Kim, Jihun, Kim, Kang-Min, Mendes de Oliveira, Claudia, Lopez-Morales, Mercedes, McCracken, Kenneth, McMuldroch, Stuart, Miller, Joseph, Mueller, Mark, Oh, Jae Sok, Ordway, Mark, Park, Byeong-Gon, Park, Chan, Park, Sung-Joon, Paxson, Charles, Phillips, David, Plummer, David, Podgorski, William, Seifahrt, Andreas, Stark, Daniel, Steiner, Joao, Uomoto, Alan, Walsworth, Ronald, Yu, Young-Sam
Other Authors: Univ Arizona, Steward Observ
Language:en
Published: SPIE-INT SOC OPTICAL ENGINEERING 2016
Subjects:
GMT
Online Access:Dan Baldwin ; Andrew Szentgyorgyi ; Stuart Barnes ; Jacob Bean ; Sagi Ben-Ami ; Patricia Brennan ; Jamie Budynkiewicz ; Moo-Young Chun ; Charlie Conroy ; Jeffrey D. Crane ; Harland Epps ; Ian Evans ; Janet Evans ; Jeff Foster ; Anna Frebel ; Thomas Gauron ; Dani Guzman ; Tyson Hare ; Bi-Ho Jang ; Jeong-Gyun Jang ; Andres Jordan ; Jihun Kim ; Kang-Min Kim ; Claudia Mendes de Oliveira ; Mercedes Lopez-Morales ; Kenneth McCracken ; Stuart McMuldroch ; Joseph Miller ; Mark Mueller ; Jae Sok Oh ; Mark Ordway ; Byeong-Gon Park ; Chan Park ; Sung-Joon Park ; Charles Paxson ; David Phillips ; David Plummer ; William Podgorski ; Andreas Seifahrt ; Daniel Stark ; Joao Steiner ; Alan Uomoto ; Ronald Walsworth and Young-Sam Yu " Advanced structural design for precision radial velocity instruments ", Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99123I (July 22, 2016); doi:10.1117/12.2235250; http://dx.doi.org/10.1117/12.2235250
http://hdl.handle.net/10150/622418
http://arizona.openrepository.com/arizona/handle/10150/622418
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-622418
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Echelle spectrograph
precision radial velocity
G -CLEF
GMT
composite optical bench
thermal stability
mechanical stability
low CIE
spellingShingle Echelle spectrograph
precision radial velocity
G -CLEF
GMT
composite optical bench
thermal stability
mechanical stability
low CIE
Baldwin, Dan
Szentgyorgyi, Andrew
Barnes, Stuart
Bean, Jacob
Ben-Ami, Sagi
Brennan, Patricia
Budynkiewicz, Jamie
Chun, Moo-Young
Conroy, Charlie
Crane, Jeffrey D.
Epps, Harland
Evans, Ian
Evans, Janet
Foster, Jeff
Frebel, Anna
Gauron, Thomas
Guzman, Dani
Hare, Tyson
Jang, Bi-Ho
Jang, Jeong-Gyun
Jordan, Andres
Kim, Jihun
Kim, Kang-Min
Mendes de Oliveira, Claudia
Lopez-Morales, Mercedes
McCracken, Kenneth
McMuldroch, Stuart
Miller, Joseph
Mueller, Mark
Oh, Jae Sok
Ordway, Mark
Park, Byeong-Gon
Park, Chan
Park, Sung-Joon
Paxson, Charles
Phillips, David
Plummer, David
Podgorski, William
Seifahrt, Andreas
Stark, Daniel
Steiner, Joao
Uomoto, Alan
Walsworth, Ronald
Yu, Young-Sam
Advanced structural design for precision radial velocity instruments
description The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars'. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (C 1E) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness to -weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.
author2 Univ Arizona, Steward Observ
author_facet Univ Arizona, Steward Observ
Baldwin, Dan
Szentgyorgyi, Andrew
Barnes, Stuart
Bean, Jacob
Ben-Ami, Sagi
Brennan, Patricia
Budynkiewicz, Jamie
Chun, Moo-Young
Conroy, Charlie
Crane, Jeffrey D.
Epps, Harland
Evans, Ian
Evans, Janet
Foster, Jeff
Frebel, Anna
Gauron, Thomas
Guzman, Dani
Hare, Tyson
Jang, Bi-Ho
Jang, Jeong-Gyun
Jordan, Andres
Kim, Jihun
Kim, Kang-Min
Mendes de Oliveira, Claudia
Lopez-Morales, Mercedes
McCracken, Kenneth
McMuldroch, Stuart
Miller, Joseph
Mueller, Mark
Oh, Jae Sok
Ordway, Mark
Park, Byeong-Gon
Park, Chan
Park, Sung-Joon
Paxson, Charles
Phillips, David
Plummer, David
Podgorski, William
Seifahrt, Andreas
Stark, Daniel
Steiner, Joao
Uomoto, Alan
Walsworth, Ronald
Yu, Young-Sam
author Baldwin, Dan
Szentgyorgyi, Andrew
Barnes, Stuart
Bean, Jacob
Ben-Ami, Sagi
Brennan, Patricia
Budynkiewicz, Jamie
Chun, Moo-Young
Conroy, Charlie
Crane, Jeffrey D.
Epps, Harland
Evans, Ian
Evans, Janet
Foster, Jeff
Frebel, Anna
Gauron, Thomas
Guzman, Dani
Hare, Tyson
Jang, Bi-Ho
Jang, Jeong-Gyun
Jordan, Andres
Kim, Jihun
Kim, Kang-Min
Mendes de Oliveira, Claudia
Lopez-Morales, Mercedes
McCracken, Kenneth
McMuldroch, Stuart
Miller, Joseph
Mueller, Mark
Oh, Jae Sok
Ordway, Mark
Park, Byeong-Gon
Park, Chan
Park, Sung-Joon
Paxson, Charles
Phillips, David
Plummer, David
Podgorski, William
Seifahrt, Andreas
Stark, Daniel
Steiner, Joao
Uomoto, Alan
Walsworth, Ronald
Yu, Young-Sam
author_sort Baldwin, Dan
title Advanced structural design for precision radial velocity instruments
title_short Advanced structural design for precision radial velocity instruments
title_full Advanced structural design for precision radial velocity instruments
title_fullStr Advanced structural design for precision radial velocity instruments
title_full_unstemmed Advanced structural design for precision radial velocity instruments
title_sort advanced structural design for precision radial velocity instruments
publisher SPIE-INT SOC OPTICAL ENGINEERING
publishDate 2016
url Dan Baldwin ; Andrew Szentgyorgyi ; Stuart Barnes ; Jacob Bean ; Sagi Ben-Ami ; Patricia Brennan ; Jamie Budynkiewicz ; Moo-Young Chun ; Charlie Conroy ; Jeffrey D. Crane ; Harland Epps ; Ian Evans ; Janet Evans ; Jeff Foster ; Anna Frebel ; Thomas Gauron ; Dani Guzman ; Tyson Hare ; Bi-Ho Jang ; Jeong-Gyun Jang ; Andres Jordan ; Jihun Kim ; Kang-Min Kim ; Claudia Mendes de Oliveira ; Mercedes Lopez-Morales ; Kenneth McCracken ; Stuart McMuldroch ; Joseph Miller ; Mark Mueller ; Jae Sok Oh ; Mark Ordway ; Byeong-Gon Park ; Chan Park ; Sung-Joon Park ; Charles Paxson ; David Phillips ; David Plummer ; William Podgorski ; Andreas Seifahrt ; Daniel Stark ; Joao Steiner ; Alan Uomoto ; Ronald Walsworth and Young-Sam Yu " Advanced structural design for precision radial velocity instruments ", Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99123I (July 22, 2016); doi:10.1117/12.2235250; http://dx.doi.org/10.1117/12.2235250
http://hdl.handle.net/10150/622418
http://arizona.openrepository.com/arizona/handle/10150/622418
work_keys_str_mv AT baldwindan advancedstructuraldesignforprecisionradialvelocityinstruments
AT szentgyorgyiandrew advancedstructuraldesignforprecisionradialvelocityinstruments
AT barnesstuart advancedstructuraldesignforprecisionradialvelocityinstruments
AT beanjacob advancedstructuraldesignforprecisionradialvelocityinstruments
AT benamisagi advancedstructuraldesignforprecisionradialvelocityinstruments
AT brennanpatricia advancedstructuraldesignforprecisionradialvelocityinstruments
AT budynkiewiczjamie advancedstructuraldesignforprecisionradialvelocityinstruments
AT chunmooyoung advancedstructuraldesignforprecisionradialvelocityinstruments
AT conroycharlie advancedstructuraldesignforprecisionradialvelocityinstruments
AT cranejeffreyd advancedstructuraldesignforprecisionradialvelocityinstruments
AT eppsharland advancedstructuraldesignforprecisionradialvelocityinstruments
AT evansian advancedstructuraldesignforprecisionradialvelocityinstruments
AT evansjanet advancedstructuraldesignforprecisionradialvelocityinstruments
AT fosterjeff advancedstructuraldesignforprecisionradialvelocityinstruments
AT frebelanna advancedstructuraldesignforprecisionradialvelocityinstruments
AT gauronthomas advancedstructuraldesignforprecisionradialvelocityinstruments
AT guzmandani advancedstructuraldesignforprecisionradialvelocityinstruments
AT haretyson advancedstructuraldesignforprecisionradialvelocityinstruments
AT jangbiho advancedstructuraldesignforprecisionradialvelocityinstruments
AT jangjeonggyun advancedstructuraldesignforprecisionradialvelocityinstruments
AT jordanandres advancedstructuraldesignforprecisionradialvelocityinstruments
AT kimjihun advancedstructuraldesignforprecisionradialvelocityinstruments
AT kimkangmin advancedstructuraldesignforprecisionradialvelocityinstruments
AT mendesdeoliveiraclaudia advancedstructuraldesignforprecisionradialvelocityinstruments
AT lopezmoralesmercedes advancedstructuraldesignforprecisionradialvelocityinstruments
AT mccrackenkenneth advancedstructuraldesignforprecisionradialvelocityinstruments
AT mcmuldrochstuart advancedstructuraldesignforprecisionradialvelocityinstruments
AT millerjoseph advancedstructuraldesignforprecisionradialvelocityinstruments
AT muellermark advancedstructuraldesignforprecisionradialvelocityinstruments
AT ohjaesok advancedstructuraldesignforprecisionradialvelocityinstruments
AT ordwaymark advancedstructuraldesignforprecisionradialvelocityinstruments
AT parkbyeonggon advancedstructuraldesignforprecisionradialvelocityinstruments
AT parkchan advancedstructuraldesignforprecisionradialvelocityinstruments
AT parksungjoon advancedstructuraldesignforprecisionradialvelocityinstruments
AT paxsoncharles advancedstructuraldesignforprecisionradialvelocityinstruments
AT phillipsdavid advancedstructuraldesignforprecisionradialvelocityinstruments
AT plummerdavid advancedstructuraldesignforprecisionradialvelocityinstruments
AT podgorskiwilliam advancedstructuraldesignforprecisionradialvelocityinstruments
AT seifahrtandreas advancedstructuraldesignforprecisionradialvelocityinstruments
AT starkdaniel advancedstructuraldesignforprecisionradialvelocityinstruments
AT steinerjoao advancedstructuraldesignforprecisionradialvelocityinstruments
AT uomotoalan advancedstructuraldesignforprecisionradialvelocityinstruments
AT walsworthronald advancedstructuraldesignforprecisionradialvelocityinstruments
AT yuyoungsam advancedstructuraldesignforprecisionradialvelocityinstruments
_version_ 1718411212123799552
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-6224182017-02-05T03:00:33Z Advanced structural design for precision radial velocity instruments Baldwin, Dan Szentgyorgyi, Andrew Barnes, Stuart Bean, Jacob Ben-Ami, Sagi Brennan, Patricia Budynkiewicz, Jamie Chun, Moo-Young Conroy, Charlie Crane, Jeffrey D. Epps, Harland Evans, Ian Evans, Janet Foster, Jeff Frebel, Anna Gauron, Thomas Guzman, Dani Hare, Tyson Jang, Bi-Ho Jang, Jeong-Gyun Jordan, Andres Kim, Jihun Kim, Kang-Min Mendes de Oliveira, Claudia Lopez-Morales, Mercedes McCracken, Kenneth McMuldroch, Stuart Miller, Joseph Mueller, Mark Oh, Jae Sok Ordway, Mark Park, Byeong-Gon Park, Chan Park, Sung-Joon Paxson, Charles Phillips, David Plummer, David Podgorski, William Seifahrt, Andreas Stark, Daniel Steiner, Joao Uomoto, Alan Walsworth, Ronald Yu, Young-Sam Univ Arizona, Steward Observ Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) The Univ. of Chicago (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Korea Astronomy and Space Science Institute (Korea, Republic of) Harvard-Smithsonian Ctr. for Astrophysics (United States) The Observatories of the Carnegie Institute for Science (United States) Univ. of California, Santa Cruz (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Kavli Institute for Astrophysics and Space Research (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Pontificia Univ. Católica de Chile (Chile) The Observatories of the Carnegie Institution of Science (United States) Korea Astronomy and Space Science Institute (Korea, Republic of) Korea Astronomy and Space Science Institute (Korea, Republic of) Pontificia Univ. Católica de Chile (Chile) Korea Astronomy and Space Science Institute (Korea, Republic of) Korea Astronomy and Space Science Institute (Korea, Republic of) Univ. de São Paulo (Brazil) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Korea Astronomy and Space Science Institute (Korea, Republic of) Harvard-Smithsonian Ctr. for Astrophysics (United States) Korea Astronomy and Space Science Institute (Korea, Republic of) Korea Astronomy and Space Science Institute (Korea, Republic of) Korea Astronomy and Space Science Institute (Korea, Republic of) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) The Univ. of Chicago (United States) The Univ. of Arizona (United States) Univ. de São Paulo (Brazil) The Observatories of the Carnegie Institution for Science (United States) Harvard-Smithsonian Ctr. for Astrophysics (United States) Korea Astronomy and Space Science Institute (Korea, Republic of) Echelle spectrograph precision radial velocity G -CLEF GMT composite optical bench thermal stability mechanical stability low CIE The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars'. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (C 1E) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness to -weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations. 2016-07-22 Article Dan Baldwin ; Andrew Szentgyorgyi ; Stuart Barnes ; Jacob Bean ; Sagi Ben-Ami ; Patricia Brennan ; Jamie Budynkiewicz ; Moo-Young Chun ; Charlie Conroy ; Jeffrey D. Crane ; Harland Epps ; Ian Evans ; Janet Evans ; Jeff Foster ; Anna Frebel ; Thomas Gauron ; Dani Guzman ; Tyson Hare ; Bi-Ho Jang ; Jeong-Gyun Jang ; Andres Jordan ; Jihun Kim ; Kang-Min Kim ; Claudia Mendes de Oliveira ; Mercedes Lopez-Morales ; Kenneth McCracken ; Stuart McMuldroch ; Joseph Miller ; Mark Mueller ; Jae Sok Oh ; Mark Ordway ; Byeong-Gon Park ; Chan Park ; Sung-Joon Park ; Charles Paxson ; David Phillips ; David Plummer ; William Podgorski ; Andreas Seifahrt ; Daniel Stark ; Joao Steiner ; Alan Uomoto ; Ronald Walsworth and Young-Sam Yu " Advanced structural design for precision radial velocity instruments ", Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99123I (July 22, 2016); doi:10.1117/12.2235250; http://dx.doi.org/10.1117/12.2235250 0277-786X 10.1117/12.2235250 http://hdl.handle.net/10150/622418 http://arizona.openrepository.com/arizona/handle/10150/622418 ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION II en http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2235250 © 2016 SPIE SPIE-INT SOC OPTICAL ENGINEERING