The Northern arc of ε Eridani’s Debris Ring as seen by ALMA

We present the first Atacama Large Millimeter/submillimeter Array (ALMA) observations of the closest known extrasolar debris disc. This disc orbits the star is an element of Eri, a K-type star just 3.2 pc away. Due to the proximity of the star, the entire disc cannot fit within the ALMA field of vie...

Full description

Bibliographic Details
Main Authors: Booth, Mark, Dent, William R. F., Jordán, Andrés, Lestrade, Jean-François, Hales, Antonio S., Wyatt, Mark C., Casassus, Simon, Ertel, Steve, Greaves, Jane S., Kennedy, Grant M., Matrà, Luca, Augereau, Jean-Charles, Villard, Eric
Other Authors: Univ Arizona, Steward Observ, Dept Astron
Language:en
Published: OXFORD UNIV PRESS 2017
Subjects:
Online Access:http://hdl.handle.net/10150/625481
http://arizona.openrepository.com/arizona/handle/10150/625481
Description
Summary:We present the first Atacama Large Millimeter/submillimeter Array (ALMA) observations of the closest known extrasolar debris disc. This disc orbits the star is an element of Eri, a K-type star just 3.2 pc away. Due to the proximity of the star, the entire disc cannot fit within the ALMA field of view. Therefore, the observations have been centred 18" North of the star, providing us with a clear detection of the Northern arc of the ring, at a wavelength of 1.3 mm. The observed disc emission is found to be narrow with a width of just 11-13 AU. The fractional disc width we find is comparable to that of the Solar system's Kuiper Belt and makes this one of the narrowest debris discs known. If the inner and outer edges are due to resonances with a planet then this planet likely has a semi-major axis of 48 AU. We find tentative evidence for clumps in the ring, although there is a strong chance that at least one is a background galaxy. We confirm, at much higher significance, the previous detection of an unresolved emission at the star that is above the level of the photosphere and attribute this excess to stellar chromospheric emission.