On the Existence of Loose Cycle Tilings and Rainbow Cycles

abstract: Extremal graph theory results often provide minimum degree conditions which guarantee a copy of one graph exists within another. A perfect $F$-tiling of a graph $G$ is a collection $\mathcal{F}$ of subgraphs of $G$ such that every element of $\mathcal{F}$ is isomorphic to $F$ and such...

Full description

Bibliographic Details
Other Authors: Oursler, Roy (Author)
Format: Doctoral Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/2286/R.I.53704
id ndltd-asu.edu-item-53704
record_format oai_dc
spelling ndltd-asu.edu-item-537042019-05-16T03:01:40Z On the Existence of Loose Cycle Tilings and Rainbow Cycles abstract: Extremal graph theory results often provide minimum degree conditions which guarantee a copy of one graph exists within another. A perfect $F$-tiling of a graph $G$ is a collection $\mathcal{F}$ of subgraphs of $G$ such that every element of $\mathcal{F}$ is isomorphic to $F$ and such that every vertex in $G$ is in exactly one element of $\mathcal{F}$. Let $C^{3}_{t}$ denote the loose cycle on $t = 2s$ vertices, the $3$-uniform hypergraph obtained by replacing the edges $e = \{u, v\}$ of a graph cycle $C$ on $s$ vertices with edge triples $\{u, x_e, v\}$, where $x_e$ is uniquely assigned to $e$. This dissertation proves for even $t \geq 6$, that any sufficiently large $3$-uniform hypergraph $H$ on $n \in t \mathbb{Z}$ vertices with minimum $1$-degree $\delta^1(H) \geq {n - 1 \choose 2} - {\Bsize \choose 2} + c(t,n) + 1$, where $c(t,n) \in \{0, 1, 3\}$, contains a perfect $C^{3}_{t}$-tiling. The result is tight, generalizing previous results on $C^3_4$ by Han and Zhao. For an edge colored graph $G$, let the minimum color degree $\delta^c(G)$ be the minimum number of distinctly colored edges incident to a vertex. Call $G$ rainbow if every edge has a unique color. For $\ell \geq 5$, this dissertation proves that any sufficiently large edge colored graph $G$ on $n$ vertices with $\delta^c(G) \geq \frac{n + 1}{2}$ contains a rainbow cycle on $\ell$ vertices. The result is tight for odd $\ell$ and extends previous results for $\ell = 3$. In addition, for even $\ell \geq 4$, this dissertation proves that any sufficiently large edge colored graph $G$ on $n$ vertices with $\delta^c(G) \geq \frac{n + c(\ell)}{3}$, where $c(\ell) \in \{5, 7\}$, contains a rainbow cycle on $\ell$ vertices. The result is tight when $6 \nmid \ell$. As a related result, this dissertation proves for all $\ell \geq 4$, that any sufficiently large oriented graph $D$ on $n$ vertices with $\delta^+(D) \geq \frac{n + 1}{3}$ contains a directed cycle on $\ell$ vertices. This partially generalizes a result by Kelly, K\"uhn, and Osthus that uses minimum semidegree rather than minimum out degree. Dissertation/Thesis Oursler, Roy (Author) Czygrinow, Andrzej (Advisor) Kierstead, Hal A (Committee member) Fishel, Susanna (Committee member) Jones, John (Committee member) Colbourn, Charles (Committee member) Arizona State University (Publisher) Mathematics Degree Graph Hypergraph Loose Cycle Rainbow Cycle Tiling eng 103 pages Doctoral Dissertation Mathematics 2019 Doctoral Dissertation http://hdl.handle.net/2286/R.I.53704 http://rightsstatements.org/vocab/InC/1.0/ 2019
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Mathematics
Degree
Graph
Hypergraph
Loose Cycle
Rainbow Cycle
Tiling
spellingShingle Mathematics
Degree
Graph
Hypergraph
Loose Cycle
Rainbow Cycle
Tiling
On the Existence of Loose Cycle Tilings and Rainbow Cycles
description abstract: Extremal graph theory results often provide minimum degree conditions which guarantee a copy of one graph exists within another. A perfect $F$-tiling of a graph $G$ is a collection $\mathcal{F}$ of subgraphs of $G$ such that every element of $\mathcal{F}$ is isomorphic to $F$ and such that every vertex in $G$ is in exactly one element of $\mathcal{F}$. Let $C^{3}_{t}$ denote the loose cycle on $t = 2s$ vertices, the $3$-uniform hypergraph obtained by replacing the edges $e = \{u, v\}$ of a graph cycle $C$ on $s$ vertices with edge triples $\{u, x_e, v\}$, where $x_e$ is uniquely assigned to $e$. This dissertation proves for even $t \geq 6$, that any sufficiently large $3$-uniform hypergraph $H$ on $n \in t \mathbb{Z}$ vertices with minimum $1$-degree $\delta^1(H) \geq {n - 1 \choose 2} - {\Bsize \choose 2} + c(t,n) + 1$, where $c(t,n) \in \{0, 1, 3\}$, contains a perfect $C^{3}_{t}$-tiling. The result is tight, generalizing previous results on $C^3_4$ by Han and Zhao. For an edge colored graph $G$, let the minimum color degree $\delta^c(G)$ be the minimum number of distinctly colored edges incident to a vertex. Call $G$ rainbow if every edge has a unique color. For $\ell \geq 5$, this dissertation proves that any sufficiently large edge colored graph $G$ on $n$ vertices with $\delta^c(G) \geq \frac{n + 1}{2}$ contains a rainbow cycle on $\ell$ vertices. The result is tight for odd $\ell$ and extends previous results for $\ell = 3$. In addition, for even $\ell \geq 4$, this dissertation proves that any sufficiently large edge colored graph $G$ on $n$ vertices with $\delta^c(G) \geq \frac{n + c(\ell)}{3}$, where $c(\ell) \in \{5, 7\}$, contains a rainbow cycle on $\ell$ vertices. The result is tight when $6 \nmid \ell$. As a related result, this dissertation proves for all $\ell \geq 4$, that any sufficiently large oriented graph $D$ on $n$ vertices with $\delta^+(D) \geq \frac{n + 1}{3}$ contains a directed cycle on $\ell$ vertices. This partially generalizes a result by Kelly, K\"uhn, and Osthus that uses minimum semidegree rather than minimum out degree. === Dissertation/Thesis === Doctoral Dissertation Mathematics 2019
author2 Oursler, Roy (Author)
author_facet Oursler, Roy (Author)
title On the Existence of Loose Cycle Tilings and Rainbow Cycles
title_short On the Existence of Loose Cycle Tilings and Rainbow Cycles
title_full On the Existence of Loose Cycle Tilings and Rainbow Cycles
title_fullStr On the Existence of Loose Cycle Tilings and Rainbow Cycles
title_full_unstemmed On the Existence of Loose Cycle Tilings and Rainbow Cycles
title_sort on the existence of loose cycle tilings and rainbow cycles
publishDate 2019
url http://hdl.handle.net/2286/R.I.53704
_version_ 1719184106698309632