Subnormality and soluble factorised groups

Throughout this summary the group G = AXB is always a product of three abelian subgroups A, X and B. In Chapter 1 we study finite 2-groups G, where A and B are elementary and X has order 2. We also assume that X normalises both A and B, and thus AX and XB are nilpotent of class at most 2. We show th...

Full description

Bibliographic Details
Main Author: Gold, Catharine Ann
Published: University of Warwick 1989
Subjects:
510
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236986
id ndltd-bl.uk-oai-ethos.bl.uk-236986
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-2369862018-06-12T03:35:53ZSubnormality and soluble factorised groupsGold, Catharine Ann1989Throughout this summary the group G = AXB is always a product of three abelian subgroups A, X and B. In Chapter 1 we study finite 2-groups G, where A and B are elementary and X has order 2. We also assume that X normalises both A and B, and thus AX and XB are nilpotent of class at most 2. We show that when the order of G divides 213 then G has derived length at most 3 ((1.4.2) and (1.6.1)). This supports the conjecture [see Introduction] on the derived length of a group which is expressible as the product of two nilpotent subgroups. In Chapter 2 we consider some special cases of G where A, X and B are finite p-groups and X is cyclic. We obtain a bound for the derived length of G which is independent of the prime p and the order of X. In Chapter 3 we find a bound for the derived length of a finite group G in terms of the highest power of a prime dividing the order of X when Ax = A, Bx = B and X is subnormal in both AX and XB. The most general result is Theorem (3.5.1). If G is a finite p-group and X has order p we show that G has derived length at most 4 (Theorem (3.3.1)). Further in Chapter 3 if Ax « A, Bx = B, X < m AX and X < m XB then a bound for the subnormal defect of X in G is given. When X has order p this bound depends only upon m (see (3.3.4)), and when X has order pn and m is fixed then the subnormal defect of X in G can be bounded in terms of n (see the remark following Proposition (3.4.2)). Chapter 4 shows how some results from Chapters 2 and 3 can be generalised to infinite groups. Theorem (4.3.1) shows that when A and B are p- groups of finite exponent, X has order pn, Ax = A, Bx = B, X < 2 AX and X < 2 XB then G is a locally finite group. Proposition (4.2.2) and Corollary (4.2.3) then enable some of the results about finite groups to be applied.510QA MathematicsUniversity of Warwickhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236986http://wrap.warwick.ac.uk/100929/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 510
QA Mathematics
spellingShingle 510
QA Mathematics
Gold, Catharine Ann
Subnormality and soluble factorised groups
description Throughout this summary the group G = AXB is always a product of three abelian subgroups A, X and B. In Chapter 1 we study finite 2-groups G, where A and B are elementary and X has order 2. We also assume that X normalises both A and B, and thus AX and XB are nilpotent of class at most 2. We show that when the order of G divides 213 then G has derived length at most 3 ((1.4.2) and (1.6.1)). This supports the conjecture [see Introduction] on the derived length of a group which is expressible as the product of two nilpotent subgroups. In Chapter 2 we consider some special cases of G where A, X and B are finite p-groups and X is cyclic. We obtain a bound for the derived length of G which is independent of the prime p and the order of X. In Chapter 3 we find a bound for the derived length of a finite group G in terms of the highest power of a prime dividing the order of X when Ax = A, Bx = B and X is subnormal in both AX and XB. The most general result is Theorem (3.5.1). If G is a finite p-group and X has order p we show that G has derived length at most 4 (Theorem (3.3.1)). Further in Chapter 3 if Ax « A, Bx = B, X < m AX and X < m XB then a bound for the subnormal defect of X in G is given. When X has order p this bound depends only upon m (see (3.3.4)), and when X has order pn and m is fixed then the subnormal defect of X in G can be bounded in terms of n (see the remark following Proposition (3.4.2)). Chapter 4 shows how some results from Chapters 2 and 3 can be generalised to infinite groups. Theorem (4.3.1) shows that when A and B are p- groups of finite exponent, X has order pn, Ax = A, Bx = B, X < 2 AX and X < 2 XB then G is a locally finite group. Proposition (4.2.2) and Corollary (4.2.3) then enable some of the results about finite groups to be applied.
author Gold, Catharine Ann
author_facet Gold, Catharine Ann
author_sort Gold, Catharine Ann
title Subnormality and soluble factorised groups
title_short Subnormality and soluble factorised groups
title_full Subnormality and soluble factorised groups
title_fullStr Subnormality and soluble factorised groups
title_full_unstemmed Subnormality and soluble factorised groups
title_sort subnormality and soluble factorised groups
publisher University of Warwick
publishDate 1989
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236986
work_keys_str_mv AT goldcatharineann subnormalityandsolublefactorisedgroups
_version_ 1718694186971037696