Gap junctions and connexin expression in the mouse inner ear

Gap junctions are sites of direct communication between adjacent cells where clusters of channels in the membrane of one cell contact clusters of channels in the membrane of the neighbouring cell. Six constituent proteins, known as connexins (Cx), make up each hemi-channel. The channels allow the pa...

Full description

Bibliographic Details
Main Author: Edwards, Jill Carole
Published: University College London (University of London) 2004
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411676
id ndltd-bl.uk-oai-ethos.bl.uk-411676
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-4116762017-11-03T03:12:45ZGap junctions and connexin expression in the mouse inner earEdwards, Jill Carole2004Gap junctions are sites of direct communication between adjacent cells where clusters of channels in the membrane of one cell contact clusters of channels in the membrane of the neighbouring cell. Six constituent proteins, known as connexins (Cx), make up each hemi-channel. The channels allow the passage of small metabolites (up to 1200 Daltons in size), ions, and second messengers between cells, coupling them both electrically and chemically. This provides a means for signalling between the cells that enables co-ordinated activity of cells in a tissue and may permit one cell to trigger a response in its neighbour. Mutations of several connexin genes have been associated with deafness and the inner ear is richly endowed with gap junctions. A review of freeze fracture replicas, obtained from various species, illustrates the unusually large size and number of gap junction plaques throughout cells of the inner ear. A comprehensive analysis of the gap junctions and connexin expression in the inner ear has been performed. Using a variety of techniques these communication channels have been observed and their constituent protein isoforms characterised. Initial screening of cochlear and vestibular tissue with rt-PCR primers established which connexin isoforms might be present; immunohistochemical follow-up with an array of antibodies enabled spatial and temporal localisation of the proteins. It has been established that Cx26 and Cx30 are the major isoforms expressed in mature inner ear whilst isofoms Cx31, Cx43, Cx45 and Cx50 play a role in development of the cochlea. Isoforms Cx26 and Cx30 appear to be co-localised within the same junctional plaques and may form heteromeric gap junctions unique to the inner ear.573.89199353University College London (University of London)http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411676http://discovery.ucl.ac.uk/1446883/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 573.89199353
spellingShingle 573.89199353
Edwards, Jill Carole
Gap junctions and connexin expression in the mouse inner ear
description Gap junctions are sites of direct communication between adjacent cells where clusters of channels in the membrane of one cell contact clusters of channels in the membrane of the neighbouring cell. Six constituent proteins, known as connexins (Cx), make up each hemi-channel. The channels allow the passage of small metabolites (up to 1200 Daltons in size), ions, and second messengers between cells, coupling them both electrically and chemically. This provides a means for signalling between the cells that enables co-ordinated activity of cells in a tissue and may permit one cell to trigger a response in its neighbour. Mutations of several connexin genes have been associated with deafness and the inner ear is richly endowed with gap junctions. A review of freeze fracture replicas, obtained from various species, illustrates the unusually large size and number of gap junction plaques throughout cells of the inner ear. A comprehensive analysis of the gap junctions and connexin expression in the inner ear has been performed. Using a variety of techniques these communication channels have been observed and their constituent protein isoforms characterised. Initial screening of cochlear and vestibular tissue with rt-PCR primers established which connexin isoforms might be present; immunohistochemical follow-up with an array of antibodies enabled spatial and temporal localisation of the proteins. It has been established that Cx26 and Cx30 are the major isoforms expressed in mature inner ear whilst isofoms Cx31, Cx43, Cx45 and Cx50 play a role in development of the cochlea. Isoforms Cx26 and Cx30 appear to be co-localised within the same junctional plaques and may form heteromeric gap junctions unique to the inner ear.
author Edwards, Jill Carole
author_facet Edwards, Jill Carole
author_sort Edwards, Jill Carole
title Gap junctions and connexin expression in the mouse inner ear
title_short Gap junctions and connexin expression in the mouse inner ear
title_full Gap junctions and connexin expression in the mouse inner ear
title_fullStr Gap junctions and connexin expression in the mouse inner ear
title_full_unstemmed Gap junctions and connexin expression in the mouse inner ear
title_sort gap junctions and connexin expression in the mouse inner ear
publisher University College London (University of London)
publishDate 2004
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411676
work_keys_str_mv AT edwardsjillcarole gapjunctionsandconnexinexpressioninthemouseinnerear
_version_ 1718559254033465344