Modification and optimisation of the biomaterial poly(epsilon-caprolactone) for tissue engineering application

Tissue Engineering is a rapidly evolving field of research that can change and improve the lives of many people. Successful use of bioresorbable polymers for many tissue engineering applications require typically; controlled degradation, biocompatibility (both cell and surrounding environment) and s...

Full description

Bibliographic Details
Main Author: Little, Uel
Published: Queen's University Belfast 2008
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491718
Description
Summary:Tissue Engineering is a rapidly evolving field of research that can change and improve the lives of many people. Successful use of bioresorbable polymers for many tissue engineering applications require typically; controlled degradation, biocompatibility (both cell and surrounding environment) and strength. Poly(c-caprolactone) (PCL) has many favourable attributes that can be utilised in tissue engineering applications. However, long uncontrollable degradation regimes and low strength in particular have limited its use for in vivo applications. The work presented here has emerged from research aimed at overcoming th.e current limitations of PCL. The degradation rate was enhanced through the use of an additive named Poly(aspartic acid-co-lactide). The results suggest that as much as 20% mass loss occurred after 7 months for the PCLIPAL blends, whereas pure PCL had zero mass loss at this time. The hydrophobic surface of PCL was made hydrophilic by the use of an atmospheric pressure glow discharge plasma. The surface became more hydrophilic at a rate which depended upon treatment time and plasma conditions. Early cell biocompatibility analysis suggests a more favourable cell response on the surface of plasma modified PCL. The strength ofPCL was optimised using a bioactive ceramic filler. The increase in mechanical performance was found to be a function of the quantity of the ceramic in the blended samples. Cooling rate effects on the structure ofPCL were investigated. The results suggest the possibility of tuning the properties ofPCL, simply by adjusting the cooling rate. It is anticipated that the outcomes from this research will promote the more frequent utilisation of PCL for in vivo applications. The results found will also help aid the development of the next generation of bioactive-bioresorbable polymers; as the processes and technologies utilised in this study can be transferred to numerous bioresorbable polymers and the design ofimplant devices.