Matrix converter for frequency changing power supply applications

The purpose of this work is to investigate the design and implementation of a 7.5kVA Matrix Converter-based power supply for aircraft applications (GPU Ground Power Unit). A Matlab/Simulink as well as SABER simulation analysis of the candidate Matrix Converter system is provided. The design and impl...

Full description

Bibliographic Details
Main Author: Lopez Arevalo, Saul
Published: University of Nottingham 2008
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.514687
Description
Summary:The purpose of this work is to investigate the design and implementation of a 7.5kVA Matrix Converter-based power supply for aircraft applications (GPU Ground Power Unit). A Matlab/Simulink as well as SABER simulation analysis of the candidate Matrix Converter system is provided. The design and implementation of the Matrix Converter is described, with particular attention to the strict requirements of the given power supply application. This AC-AC system is proposed as an effective replacement for the conventional AC-DC-AC system which employs a two-step power conversion. The Matrix Converter is an attractive topology of power converter for power supply applications where factors such as the absence of electrolytic capacitors, the potentiality of increasing power density, reducing size and weight and good input power quality are fundamental. An improved control structure is proposed. This structure employs an ABC reference frame implementation comprising at the Repetitive Control strategy combined with a traditional tracking controller in order to attenuate or eliminate the unwanted harmonic distortion in the output voltage waveform of the Matrix Converter and to compensate for the steady-state error. The system with the proposed control was initially fully analyzed and verified by simulation. The analysis of the input and output waveforms identified the constraints that need to be satisfied to ensure successful operation of the converter. Finally, to demonstrate both the Matrix Converter concept and the control strategy proposed, a 7.5kVA prototype of the proposed system was constructed and tested in Nottingham PEMC laboratory. The experimental results obtained confirmed the expectations from the simulation study and the validity of the power converter and control design.