Cleaning of toothpaste from process equipment by fluid flow at laboratory and pilot scales

Cleaning studies were performed to remove toothpaste by fluid flow at different temperatures and velocities to mimic CIP (Cleaning-In-Place) processes on toothpaste coated coupons at laboratory scale and fully filled pipeline at pilot scale (different lengths and diameters). The cleaning time was re...

Full description

Bibliographic Details
Main Author: Cole, Pamela Anne
Published: University of Birmingham 2013
Subjects:
660
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569752
Description
Summary:Cleaning studies were performed to remove toothpaste by fluid flow at different temperatures and velocities to mimic CIP (Cleaning-In-Place) processes on toothpaste coated coupons at laboratory scale and fully filled pipeline at pilot scale (different lengths and diameters). The cleaning time was reduced by increasing the velocity and temperature of the water, however no further time benefit was seen above 40°C. The adhesive force for different pastes calculated from micromanipulation data followed the same trend as cleaning times on the laboratory cleaning rig. This cleaning data for the different paste formulations had a logarithmic relationship with the viscosity term from the Herschel-Bulkley rheological model. Removal of toothpaste from pipes occurred by the core of the paste being removed from the centre of the pipe to leave a thin coating on the pipe wall, which was then eroded by flow. Pipes of lengths between 0.3 m and 2 m (47.7 mm diameter pipe) showed no difference in cleaning time. The rate limiting process was removal of the thin wall coating and therefore not a function of length. An inverse wall shear stress relationship with cleaning time was found to represent all the data, at all scales and under all conditions.