Role of microRNAs in renal fibrosis

This thesis examines the role of microRNAs in renal fibrosis. MicroRNAs constitute a large family of approximately 22-nucleotide-long non-coding RNAs, that in animal cells regulate gene expression posttranscriptionally. At the start of the project, microRNAs were emerging as potentially important fa...

Full description

Bibliographic Details
Main Author: Krupa, Aleksandra
Published: Cardiff University 2010
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.584865
id ndltd-bl.uk-oai-ethos.bl.uk-584865
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5848652015-03-20T03:22:25ZRole of microRNAs in renal fibrosisKrupa, Aleksandra2010This thesis examines the role of microRNAs in renal fibrosis. MicroRNAs constitute a large family of approximately 22-nucleotide-long non-coding RNAs, that in animal cells regulate gene expression posttranscriptionally. At the start of the project, microRNAs were emerging as potentially important factors in various physiological and pathological processes however, there was very little known about their expression and function in the kidney, in particular in tubulointerstitial fibrosis. In this thesis, global microRNA expression has been analysed in vitro in proximal tubular epithelial cells, and in vivo in formalin-fixed, paraffin-embedded kidney biopsy samples from patients with diabetic nephropathy. Among microRNAs altered by profibrotic stimuli, the greatest difference has been found in expression ofmiR-192, which is downregulated in severe diabetic nephropathy. Further examination of miR-192 in kidney biopsy samples has revealed that its expression correlates well with renal function and inversely correlates with fibrosis. A possible function of miR-192 has been then studied in vitro in proximal tubular epithelial cells. It has been found that treatment of the cells with the profibrotic cytokine TGF-β1 downregulates miR-192. Moreover, manipulation of miR-192 expression has shown that miR-192 is involved in E-cadherin regulation. The mechanism of that regulation has been investigated, pointing to two transcriptional repressors of E-cadherin, ZEB1 and ZEB2, as direct targets of miR-192. The presented data suggest that, in the kidney, miR-192 may prevent epithelial-to-mesenchymal transition, known to contribute to renal fibrosis. In parallel, global microRNA downregulation in proximal tubular epithelial cells has been attempted. However, knockdown of Dicer or TRBP, proteins involved in microRNA processing, has not been sufficient to induce changes in microRNA expression. The possible explanations have been discussed. Finally, microRNA role in direct regulation of TGF-β1 synthesis has been investigated. In particular, human microRNAs similar to viral hsv-miR-LAT, reported to directly target TGF-β1 mRNA, have been tested.616.6Cardiff Universityhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.584865http://orca.cf.ac.uk/54361/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 616.6
spellingShingle 616.6
Krupa, Aleksandra
Role of microRNAs in renal fibrosis
description This thesis examines the role of microRNAs in renal fibrosis. MicroRNAs constitute a large family of approximately 22-nucleotide-long non-coding RNAs, that in animal cells regulate gene expression posttranscriptionally. At the start of the project, microRNAs were emerging as potentially important factors in various physiological and pathological processes however, there was very little known about their expression and function in the kidney, in particular in tubulointerstitial fibrosis. In this thesis, global microRNA expression has been analysed in vitro in proximal tubular epithelial cells, and in vivo in formalin-fixed, paraffin-embedded kidney biopsy samples from patients with diabetic nephropathy. Among microRNAs altered by profibrotic stimuli, the greatest difference has been found in expression ofmiR-192, which is downregulated in severe diabetic nephropathy. Further examination of miR-192 in kidney biopsy samples has revealed that its expression correlates well with renal function and inversely correlates with fibrosis. A possible function of miR-192 has been then studied in vitro in proximal tubular epithelial cells. It has been found that treatment of the cells with the profibrotic cytokine TGF-β1 downregulates miR-192. Moreover, manipulation of miR-192 expression has shown that miR-192 is involved in E-cadherin regulation. The mechanism of that regulation has been investigated, pointing to two transcriptional repressors of E-cadherin, ZEB1 and ZEB2, as direct targets of miR-192. The presented data suggest that, in the kidney, miR-192 may prevent epithelial-to-mesenchymal transition, known to contribute to renal fibrosis. In parallel, global microRNA downregulation in proximal tubular epithelial cells has been attempted. However, knockdown of Dicer or TRBP, proteins involved in microRNA processing, has not been sufficient to induce changes in microRNA expression. The possible explanations have been discussed. Finally, microRNA role in direct regulation of TGF-β1 synthesis has been investigated. In particular, human microRNAs similar to viral hsv-miR-LAT, reported to directly target TGF-β1 mRNA, have been tested.
author Krupa, Aleksandra
author_facet Krupa, Aleksandra
author_sort Krupa, Aleksandra
title Role of microRNAs in renal fibrosis
title_short Role of microRNAs in renal fibrosis
title_full Role of microRNAs in renal fibrosis
title_fullStr Role of microRNAs in renal fibrosis
title_full_unstemmed Role of microRNAs in renal fibrosis
title_sort role of micrornas in renal fibrosis
publisher Cardiff University
publishDate 2010
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.584865
work_keys_str_mv AT krupaaleksandra roleofmicrornasinrenalfibrosis
_version_ 1716780474153566208