Bayesian methods in cosmology

This thesis is concerned with the amount and distribution of dark matter in the universe and makes use of Bayesian techniques to extract maximal information. I have been using two independent approaches. I have (i) compared and combined cosmological parameter estimates from various cosmological prob...

Full description

Bibliographic Details
Main Author: Bridle, S. L.
Published: University of Cambridge 2001
Subjects:
520
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596905
id ndltd-bl.uk-oai-ethos.bl.uk-596905
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-5969052015-03-20T06:03:43ZBayesian methods in cosmologyBridle, S. L.2001This thesis is concerned with the amount and distribution of dark matter in the universe and makes use of Bayesian techniques to extract maximal information. I have been using two independent approaches. I have (i) compared and combined cosmological parameter estimates from various cosmological probes and (ii) I have developed a method for estimating the mass distribution in clusters of galaxies using gravitational lensing. The first approach tests cosmological theories and estimates the cosmological parameters, including the total amount of matter. The second produces maps of the dark matter in the largest gravitationally bound structures in the universe. Chapter 3 is also published as 'Cosmological Parameters from Cluster Abundances, CMB and IRAS' by Bridle et al. 1999 (MNRAS, 310, 565). Chapter 4 is also available as 'Cosmological Parameters from Velocities, CMB and Supernovae' by Bridle et al. 2000 (astro-ph/0006170, MNRAS accepted). Chapter 5 contains the work presented in Lahav, Bridle, Hobson, Lasenby and Sodré Jr. 2000 (MNRAS, 315, L45) entitled 'Bayesian 'Hyper-Parameters' Approach to Joint Estimation: the Hubble Constant from CMB Measurements' and further demonstrates the properties of this approach by applying it to toy models. Part II concerns maximum-entropy reconstruction of mass distributions from weak gravitational lensing data and consists of two chapters. Chapter 6 sets out the basic method, also published in 'A maximum-entropy method for reconstructing the projected mass distribution of gravitational lenses' by Bridle et al. 1998 (MNRAS, 299, 895). Chapter 7 details extensions to this work, also shortly to become available in Bridle et al. 2000, entitled 'Maximum-Entropy Reconstruction of Gravitational Lenses using Shear and/or Magnification Data'. Future directions are suggested in the conclusions to each part and in the Concluding Remarks.520University of Cambridgehttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596905Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 520
spellingShingle 520
Bridle, S. L.
Bayesian methods in cosmology
description This thesis is concerned with the amount and distribution of dark matter in the universe and makes use of Bayesian techniques to extract maximal information. I have been using two independent approaches. I have (i) compared and combined cosmological parameter estimates from various cosmological probes and (ii) I have developed a method for estimating the mass distribution in clusters of galaxies using gravitational lensing. The first approach tests cosmological theories and estimates the cosmological parameters, including the total amount of matter. The second produces maps of the dark matter in the largest gravitationally bound structures in the universe. Chapter 3 is also published as 'Cosmological Parameters from Cluster Abundances, CMB and IRAS' by Bridle et al. 1999 (MNRAS, 310, 565). Chapter 4 is also available as 'Cosmological Parameters from Velocities, CMB and Supernovae' by Bridle et al. 2000 (astro-ph/0006170, MNRAS accepted). Chapter 5 contains the work presented in Lahav, Bridle, Hobson, Lasenby and Sodré Jr. 2000 (MNRAS, 315, L45) entitled 'Bayesian 'Hyper-Parameters' Approach to Joint Estimation: the Hubble Constant from CMB Measurements' and further demonstrates the properties of this approach by applying it to toy models. Part II concerns maximum-entropy reconstruction of mass distributions from weak gravitational lensing data and consists of two chapters. Chapter 6 sets out the basic method, also published in 'A maximum-entropy method for reconstructing the projected mass distribution of gravitational lenses' by Bridle et al. 1998 (MNRAS, 299, 895). Chapter 7 details extensions to this work, also shortly to become available in Bridle et al. 2000, entitled 'Maximum-Entropy Reconstruction of Gravitational Lenses using Shear and/or Magnification Data'. Future directions are suggested in the conclusions to each part and in the Concluding Remarks.
author Bridle, S. L.
author_facet Bridle, S. L.
author_sort Bridle, S. L.
title Bayesian methods in cosmology
title_short Bayesian methods in cosmology
title_full Bayesian methods in cosmology
title_fullStr Bayesian methods in cosmology
title_full_unstemmed Bayesian methods in cosmology
title_sort bayesian methods in cosmology
publisher University of Cambridge
publishDate 2001
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596905
work_keys_str_mv AT bridlesl bayesianmethodsincosmology
_version_ 1716795417598885888