A coupled Lagrangian-Eulerian framework to model droplet to film interaction with heat transfer

A droplet to film interaction modelling Computational Fluid Dynamics (CFD) technique is presented in this work. The eventual target application is an aeroengine bearing chamber where oil is used to lubricate and cool the bearings and the bearing chamber walls. Inside the chamber, the oil is found as...

Full description

Bibliographic Details
Main Author: Adeniyi, Akinola A.
Published: University of Nottingham 2015
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.692705
id ndltd-bl.uk-oai-ethos.bl.uk-692705
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-6927052018-02-05T15:24:02ZA coupled Lagrangian-Eulerian framework to model droplet to film interaction with heat transferAdeniyi, Akinola A.2015A droplet to film interaction modelling Computational Fluid Dynamics (CFD) technique is presented in this work. The eventual target application is an aeroengine bearing chamber where oil is used to lubricate and cool the bearings and the bearing chamber walls. Inside the chamber, the oil is found as jets/filaments, film and as droplets in the highly rotational environment. Of particular interest in this work is the formation of the continuous film from the droplets. Spray-film is another relevant application with droplets forming film as it cools the wall. In this work, the liquid and gas continua are modelled using an enhanced Volume of Fluid (VoF) technique. The droplets in the core-air are tracked using a Lagrangian framework that treats them as discrete particles and are coupled to the Eulerian VoF film upon impact using source terms. In finite volume CFD techniques, a prohibitively large number of computational cells would be required to describe, in details, the droplet-film impact phenomenon. The proposal here is that finer mesh, sufficient to capture the film physics, is used only close to walls or where film is expected to form. Simple droplet train to complex spray-film setups are used to verify and validate for mass, momentum and energy transfer. The technique was also applied to experimental rigs representative of aeroengine bearing chambers; and as with every CFD problems, the choice of boundary conditions determines the final output. A parametric study of the bearing chamber flows shows that film thickness increases with flow rate. The film thickness increases with a reducing shaft speed for same flow rate. The heat transfer coefficient results show that higher flow rates provide better heat transfer at higher shaft speeds.620.1TA 357 Fluid mechanicsUniversity of Nottinghamhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.692705http://eprints.nottingham.ac.uk/30682/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 620.1
TA 357 Fluid mechanics
spellingShingle 620.1
TA 357 Fluid mechanics
Adeniyi, Akinola A.
A coupled Lagrangian-Eulerian framework to model droplet to film interaction with heat transfer
description A droplet to film interaction modelling Computational Fluid Dynamics (CFD) technique is presented in this work. The eventual target application is an aeroengine bearing chamber where oil is used to lubricate and cool the bearings and the bearing chamber walls. Inside the chamber, the oil is found as jets/filaments, film and as droplets in the highly rotational environment. Of particular interest in this work is the formation of the continuous film from the droplets. Spray-film is another relevant application with droplets forming film as it cools the wall. In this work, the liquid and gas continua are modelled using an enhanced Volume of Fluid (VoF) technique. The droplets in the core-air are tracked using a Lagrangian framework that treats them as discrete particles and are coupled to the Eulerian VoF film upon impact using source terms. In finite volume CFD techniques, a prohibitively large number of computational cells would be required to describe, in details, the droplet-film impact phenomenon. The proposal here is that finer mesh, sufficient to capture the film physics, is used only close to walls or where film is expected to form. Simple droplet train to complex spray-film setups are used to verify and validate for mass, momentum and energy transfer. The technique was also applied to experimental rigs representative of aeroengine bearing chambers; and as with every CFD problems, the choice of boundary conditions determines the final output. A parametric study of the bearing chamber flows shows that film thickness increases with flow rate. The film thickness increases with a reducing shaft speed for same flow rate. The heat transfer coefficient results show that higher flow rates provide better heat transfer at higher shaft speeds.
author Adeniyi, Akinola A.
author_facet Adeniyi, Akinola A.
author_sort Adeniyi, Akinola A.
title A coupled Lagrangian-Eulerian framework to model droplet to film interaction with heat transfer
title_short A coupled Lagrangian-Eulerian framework to model droplet to film interaction with heat transfer
title_full A coupled Lagrangian-Eulerian framework to model droplet to film interaction with heat transfer
title_fullStr A coupled Lagrangian-Eulerian framework to model droplet to film interaction with heat transfer
title_full_unstemmed A coupled Lagrangian-Eulerian framework to model droplet to film interaction with heat transfer
title_sort coupled lagrangian-eulerian framework to model droplet to film interaction with heat transfer
publisher University of Nottingham
publishDate 2015
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.692705
work_keys_str_mv AT adeniyiakinolaa acoupledlagrangianeulerianframeworktomodeldroplettofilminteractionwithheattransfer
AT adeniyiakinolaa coupledlagrangianeulerianframeworktomodeldroplettofilminteractionwithheattransfer
_version_ 1718613118731419648