Graph algorithms and complexity aspects on special graph classes

Graphs are a very flexible tool within mathematics, as such, numerous problems can be solved by formulating them as an instance of a graph. As a result, however, some of the structures found in real world problems may be lost in a more general graph. An example of this is the 4-Colouring problem whi...

Full description

Bibliographic Details
Main Author: Stewart, Anthony Graham
Published: Durham University 2017
Subjects:
511
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716299
id ndltd-bl.uk-oai-ethos.bl.uk-716299
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-7162992018-10-09T03:26:02ZGraph algorithms and complexity aspects on special graph classesStewart, Anthony Graham2017Graphs are a very flexible tool within mathematics, as such, numerous problems can be solved by formulating them as an instance of a graph. As a result, however, some of the structures found in real world problems may be lost in a more general graph. An example of this is the 4-Colouring problem which, as a graph problem, is NP-complete. However, when a map is converted into a graph, we observe that this graph has structural properties, namely being (K_5, K_{3,3})-minor-free which can be exploited and as such there exist algorithms which can find 4-colourings of maps in polynomial time. This thesis looks at problems which are NP-complete in general and determines the complexity of the problem when various restrictions are placed on the input, both for the purpose of finding tractable solutions for inputs which have certain structures, and to increase our understanding of the point at which a problem becomes NP-complete. This thesis looks at four problems over four chapters, the first being Parallel Knock-Out. This chapter will show that Parallel Knock-Out can be solved in O(n+m) time on P_4-free graphs, also known as cographs, however, remains hard on split graphs, a subclass of P_5-free graphs. From this a dichotomy is shown on $P_k$-free graphs for any fixed integer $k$. The second chapter looks at Minimal Disconnected Cut. Along with some smaller results, the main result in this chapter is another dichotomy theorem which states that Minimal Disconnected Cut is polynomial time solvable for 3-connected planar graphs but NP-hard for 2-connected planar graphs. The third chapter looks at Square Root. Whilst a number of results were found, the work in this thesis focuses on the Square Root problem when restricted to some classes of graphs with low clique number. The final chapter looks at Surjective H-Colouring. This chapter shows that Surjective H-Colouring is NP-complete, for any fixed, non-loop connected graph H with two reflexive vertices and for any fixed graph H’ which can be obtained from H by replacing vertices with true twins. This result enabled us to determine the complexity of Surjective H-Colouring on all fixed graphs H of size at most 4.511Durham Universityhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716299http://etheses.dur.ac.uk/12144/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 511
spellingShingle 511
Stewart, Anthony Graham
Graph algorithms and complexity aspects on special graph classes
description Graphs are a very flexible tool within mathematics, as such, numerous problems can be solved by formulating them as an instance of a graph. As a result, however, some of the structures found in real world problems may be lost in a more general graph. An example of this is the 4-Colouring problem which, as a graph problem, is NP-complete. However, when a map is converted into a graph, we observe that this graph has structural properties, namely being (K_5, K_{3,3})-minor-free which can be exploited and as such there exist algorithms which can find 4-colourings of maps in polynomial time. This thesis looks at problems which are NP-complete in general and determines the complexity of the problem when various restrictions are placed on the input, both for the purpose of finding tractable solutions for inputs which have certain structures, and to increase our understanding of the point at which a problem becomes NP-complete. This thesis looks at four problems over four chapters, the first being Parallel Knock-Out. This chapter will show that Parallel Knock-Out can be solved in O(n+m) time on P_4-free graphs, also known as cographs, however, remains hard on split graphs, a subclass of P_5-free graphs. From this a dichotomy is shown on $P_k$-free graphs for any fixed integer $k$. The second chapter looks at Minimal Disconnected Cut. Along with some smaller results, the main result in this chapter is another dichotomy theorem which states that Minimal Disconnected Cut is polynomial time solvable for 3-connected planar graphs but NP-hard for 2-connected planar graphs. The third chapter looks at Square Root. Whilst a number of results were found, the work in this thesis focuses on the Square Root problem when restricted to some classes of graphs with low clique number. The final chapter looks at Surjective H-Colouring. This chapter shows that Surjective H-Colouring is NP-complete, for any fixed, non-loop connected graph H with two reflexive vertices and for any fixed graph H’ which can be obtained from H by replacing vertices with true twins. This result enabled us to determine the complexity of Surjective H-Colouring on all fixed graphs H of size at most 4.
author Stewart, Anthony Graham
author_facet Stewart, Anthony Graham
author_sort Stewart, Anthony Graham
title Graph algorithms and complexity aspects on special graph classes
title_short Graph algorithms and complexity aspects on special graph classes
title_full Graph algorithms and complexity aspects on special graph classes
title_fullStr Graph algorithms and complexity aspects on special graph classes
title_full_unstemmed Graph algorithms and complexity aspects on special graph classes
title_sort graph algorithms and complexity aspects on special graph classes
publisher Durham University
publishDate 2017
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.716299
work_keys_str_mv AT stewartanthonygraham graphalgorithmsandcomplexityaspectsonspecialgraphclasses
_version_ 1718772247595843584