Novel sustainable evaluation approach for multi-biomass supply chain

After the oil crisis held in 1973 and 1979, academicians and industry players have noticed the importance and necessity of having alternative and sustainable energy sources in future. Biological wastes, also named as “Biomass” has been cited as one of the significant sustainable energy sources. Biom...

Full description

Bibliographic Details
Main Author: How, Bing Shen
Published: University of Nottingham 2018
Subjects:
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757377
id ndltd-bl.uk-oai-ethos.bl.uk-757377
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-7573772019-02-05T03:19:34ZNovel sustainable evaluation approach for multi-biomass supply chainHow, Bing Shen2018After the oil crisis held in 1973 and 1979, academicians and industry players have noticed the importance and necessity of having alternative and sustainable energy sources in future. Biological wastes, also named as “Biomass” has been cited as one of the significant sustainable energy sources. Biomass poses an ideal and substantial potential to achieve a sustainable system. However, the development of biomass industry is still relatively sluggish due to the lack of confidence of the investor to venture in this relatively new green business. This is most probably attributed to the low-maturation of biomass technologies compared to other conventional technologies, high logistics cost required for biomass transportation and uncertain market penetration barrier for the biomass-derived products. This raises the importance of having a proper biomass management system and a systematic evaluation approach to assess the sustainability performances of the biomass industry. Therefore, the ultimate goal of this thesis is to develop a sustainable multi-biomass supply chain with the aims of optimising all three sustainability dimensions simultaneously. A sustainable multi-biomass supply chain is referred as the integrated value chain of the green products, which derived from various types of biomass, starting from harvesting stage to the final products delivery stage. This thesis discusses in detail on the relevant previous research works toward the introduction of novel evaluation approach to attain different sustainable objectives (i.e., economic, environmental and social) simultaneously. The evaluation approach encompasses various components, including (i) model reduction by using P-graph integrated two-stage optimisation approach; (ii) consideration of vehicle capacity constraint for detailed transportation cost estimation; (iii) integration of various sustainability indexes using various optimisation techniques. On top of that, two novel debottlenecking approaches, one through principal component analysis (PCA) method; while another through P-graph framework, which able to identify and remove barriers that limit the sustainability performance of the biomass supply chain, are proposed. Aside from this, this thesis also aims to reduce the gaps between the researchers and industry players by developing some user-friendly and non-programming-background dependent decision-making tools. Thus, decision-makers are able to understand the insight of their problems easily without requirement of strong mathematical background. A case study in Johor, a southern state in Malaysia, which is endowed with extensive biomass resources, is used to demonstrate the effective of the proposed approaches.TP Chemical technologyUniversity of Nottinghamhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757377http://eprints.nottingham.ac.uk/49091/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic TP Chemical technology
spellingShingle TP Chemical technology
How, Bing Shen
Novel sustainable evaluation approach for multi-biomass supply chain
description After the oil crisis held in 1973 and 1979, academicians and industry players have noticed the importance and necessity of having alternative and sustainable energy sources in future. Biological wastes, also named as “Biomass” has been cited as one of the significant sustainable energy sources. Biomass poses an ideal and substantial potential to achieve a sustainable system. However, the development of biomass industry is still relatively sluggish due to the lack of confidence of the investor to venture in this relatively new green business. This is most probably attributed to the low-maturation of biomass technologies compared to other conventional technologies, high logistics cost required for biomass transportation and uncertain market penetration barrier for the biomass-derived products. This raises the importance of having a proper biomass management system and a systematic evaluation approach to assess the sustainability performances of the biomass industry. Therefore, the ultimate goal of this thesis is to develop a sustainable multi-biomass supply chain with the aims of optimising all three sustainability dimensions simultaneously. A sustainable multi-biomass supply chain is referred as the integrated value chain of the green products, which derived from various types of biomass, starting from harvesting stage to the final products delivery stage. This thesis discusses in detail on the relevant previous research works toward the introduction of novel evaluation approach to attain different sustainable objectives (i.e., economic, environmental and social) simultaneously. The evaluation approach encompasses various components, including (i) model reduction by using P-graph integrated two-stage optimisation approach; (ii) consideration of vehicle capacity constraint for detailed transportation cost estimation; (iii) integration of various sustainability indexes using various optimisation techniques. On top of that, two novel debottlenecking approaches, one through principal component analysis (PCA) method; while another through P-graph framework, which able to identify and remove barriers that limit the sustainability performance of the biomass supply chain, are proposed. Aside from this, this thesis also aims to reduce the gaps between the researchers and industry players by developing some user-friendly and non-programming-background dependent decision-making tools. Thus, decision-makers are able to understand the insight of their problems easily without requirement of strong mathematical background. A case study in Johor, a southern state in Malaysia, which is endowed with extensive biomass resources, is used to demonstrate the effective of the proposed approaches.
author How, Bing Shen
author_facet How, Bing Shen
author_sort How, Bing Shen
title Novel sustainable evaluation approach for multi-biomass supply chain
title_short Novel sustainable evaluation approach for multi-biomass supply chain
title_full Novel sustainable evaluation approach for multi-biomass supply chain
title_fullStr Novel sustainable evaluation approach for multi-biomass supply chain
title_full_unstemmed Novel sustainable evaluation approach for multi-biomass supply chain
title_sort novel sustainable evaluation approach for multi-biomass supply chain
publisher University of Nottingham
publishDate 2018
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757377
work_keys_str_mv AT howbingshen novelsustainableevaluationapproachformultibiomasssupplychain
_version_ 1718972952969478144