Tidal Disruption of Stars by Supermassive Black Holes

This thesis presents theoretical results on the tidal disruption of stars by supermassive black holes (SMBHs). The multiwavelength ares produced by tidal disruption events (TDEs) have supernova-like luminosities, and associated relativistic jets can be visible to cosmological distances. TDEs probe t...

Full description

Bibliographic Details
Main Author: Stone, Nicholas Chamberlain
Other Authors: Loeb, Abraham
Language:en_US
Published: Harvard University 2013
Subjects:
Online Access:http://dissertations.umi.com/gsas.harvard:10998
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11041646
id ndltd-harvard.edu-oai-dash.harvard.edu-1-11041646
record_format oai_dc
spelling ndltd-harvard.edu-oai-dash.harvard.edu-1-110416462015-08-14T15:42:18ZTidal Disruption of Stars by Supermassive Black HolesStone, Nicholas ChamberlainAstrophysicsAstronomyPhysicsaccretion physicsblack holesgalactic nucleigravitational wavesjetstidal disruptionThis thesis presents theoretical results on the tidal disruption of stars by supermassive black holes (SMBHs). The multiwavelength ares produced by tidal disruption events (TDEs) have supernova-like luminosities, and associated relativistic jets can be visible to cosmological distances. TDEs probe the demography of quiescent SMBHs, and are natural laboratories for jet launching mechanisms and super-Eddington accretion. The first chapter broadly surveys TDE physics. The second and third chapters estimate the TDE rate following gravitational wave (GW) recoil of a SMBH (after a SMBH binary merger). Immediately after GW recoil, the TDE rate increases, sometimes to \(~10^{-1}\) TDEs per year. This "burst" of TDE flares can provide an electromagnetic counterpart to low frequency GW signals, localizing sources and measuring cosmological parameters. Millions of years later, recoiled SMBHs wandering through their host galaxies will produce spatially offset TDEs at a rate which is likely detectable with the LSST. In the fourth chapter, we show that standard estimates for \(\Delta\epsilon\), the energy spread of TDE debris, are wrong, sometimes by orders of magnitude. Correcting this error reduces the observability of many TDEs. We introduce a new analytic model for tidal disruption, calculate \(\Delta\epsilon\)'s dependence on stellar spin, estimate general relativistic corrections to \(\Delta\epsilon\), and quantify the GW signal generated from tidal compression. The fifth chapter presents hydrodynamical simulations of TDE debris circularization, focusing on eccentric, rather than parabolic, orbits. General relativistic precession drives debris circularization, in contrast to past simulations using smaller black holes. In the sixth chapter, we show that TDE light curves can constrain or measure SMBH spins, as Lense-Thirring torques produce quasiperiodic variability in disk emission. Precession of a relativistic jet could also measure SMBH spin, and we apply our model to the relativistic Swift 1644+57 TDE. The seventh chapter considers the disruption of neutron stars (NSs) by stellar mass black holes (BHs) or other NSs. Jet precession in associated short-hard gamma ray bursts is uniquely possible for NS-BH (not NS-NS) mergers. We quantify typical precession amplitudes and periods, and calculate their time evolution. If disk viscosities are relatively low, electromagnetic observations alone could distinguish NS-BH from NS-NS mergers.AstronomyLoeb, Abraham2013-09-16T21:18:20Z2013-09-1620132014-06-07T07:30:51ZThesis or DissertationStone, Nicholas Chamberlain. 2013. Tidal Disruption of Stars by Supermassive Black Holes. Doctoral dissertation, Harvard University.http://dissertations.umi.com/gsas.harvard:10998http://nrs.harvard.edu/urn-3:HUL.InstRepos:11041646en_USopenhttp://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAAHarvard University
collection NDLTD
language en_US
sources NDLTD
topic Astrophysics
Astronomy
Physics
accretion physics
black holes
galactic nuclei
gravitational waves
jets
tidal disruption
spellingShingle Astrophysics
Astronomy
Physics
accretion physics
black holes
galactic nuclei
gravitational waves
jets
tidal disruption
Stone, Nicholas Chamberlain
Tidal Disruption of Stars by Supermassive Black Holes
description This thesis presents theoretical results on the tidal disruption of stars by supermassive black holes (SMBHs). The multiwavelength ares produced by tidal disruption events (TDEs) have supernova-like luminosities, and associated relativistic jets can be visible to cosmological distances. TDEs probe the demography of quiescent SMBHs, and are natural laboratories for jet launching mechanisms and super-Eddington accretion. The first chapter broadly surveys TDE physics. The second and third chapters estimate the TDE rate following gravitational wave (GW) recoil of a SMBH (after a SMBH binary merger). Immediately after GW recoil, the TDE rate increases, sometimes to \(~10^{-1}\) TDEs per year. This "burst" of TDE flares can provide an electromagnetic counterpart to low frequency GW signals, localizing sources and measuring cosmological parameters. Millions of years later, recoiled SMBHs wandering through their host galaxies will produce spatially offset TDEs at a rate which is likely detectable with the LSST. In the fourth chapter, we show that standard estimates for \(\Delta\epsilon\), the energy spread of TDE debris, are wrong, sometimes by orders of magnitude. Correcting this error reduces the observability of many TDEs. We introduce a new analytic model for tidal disruption, calculate \(\Delta\epsilon\)'s dependence on stellar spin, estimate general relativistic corrections to \(\Delta\epsilon\), and quantify the GW signal generated from tidal compression. The fifth chapter presents hydrodynamical simulations of TDE debris circularization, focusing on eccentric, rather than parabolic, orbits. General relativistic precession drives debris circularization, in contrast to past simulations using smaller black holes. In the sixth chapter, we show that TDE light curves can constrain or measure SMBH spins, as Lense-Thirring torques produce quasiperiodic variability in disk emission. Precession of a relativistic jet could also measure SMBH spin, and we apply our model to the relativistic Swift 1644+57 TDE. The seventh chapter considers the disruption of neutron stars (NSs) by stellar mass black holes (BHs) or other NSs. Jet precession in associated short-hard gamma ray bursts is uniquely possible for NS-BH (not NS-NS) mergers. We quantify typical precession amplitudes and periods, and calculate their time evolution. If disk viscosities are relatively low, electromagnetic observations alone could distinguish NS-BH from NS-NS mergers. === Astronomy
author2 Loeb, Abraham
author_facet Loeb, Abraham
Stone, Nicholas Chamberlain
author Stone, Nicholas Chamberlain
author_sort Stone, Nicholas Chamberlain
title Tidal Disruption of Stars by Supermassive Black Holes
title_short Tidal Disruption of Stars by Supermassive Black Holes
title_full Tidal Disruption of Stars by Supermassive Black Holes
title_fullStr Tidal Disruption of Stars by Supermassive Black Holes
title_full_unstemmed Tidal Disruption of Stars by Supermassive Black Holes
title_sort tidal disruption of stars by supermassive black holes
publisher Harvard University
publishDate 2013
url http://dissertations.umi.com/gsas.harvard:10998
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11041646
work_keys_str_mv AT stonenicholaschamberlain tidaldisruptionofstarsbysupermassiveblackholes
_version_ 1716816739597025280