Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli

Thesis (MScAgric)--University of Stellenbosch, 2002. === ENGLISH ABSTRACT: Cellulose, a ~-1,4-linked polymer of glucose, is the most abundant renewable carbon source on earth. It is well established that efficient degradation of cellulose requires the synergistic action of three categories of enz...

Full description

Bibliographic Details
Main Author: Van Rooyen, Ronel, 1976-
Other Authors: Van Zyl, W. H.
Format: Others
Language:en_ZA
Published: Stellenbosch : Stellenbosch University 2012
Subjects:
Online Access:http://hdl.handle.net/10019.1/52733
id ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-52733
record_format oai_dc
collection NDLTD
language en_ZA
format Others
sources NDLTD
topic Bacillus (Bacteria) -- Genetics
Escherichia coli -- Genetics
Cellulose -- Biodegradation
Carbon cycle (Biogeochemistry)
spellingShingle Bacillus (Bacteria) -- Genetics
Escherichia coli -- Genetics
Cellulose -- Biodegradation
Carbon cycle (Biogeochemistry)
Van Rooyen, Ronel, 1976-
Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli
description Thesis (MScAgric)--University of Stellenbosch, 2002. === ENGLISH ABSTRACT: Cellulose, a ~-1,4-linked polymer of glucose, is the most abundant renewable carbon source on earth. It is well established that efficient degradation of cellulose requires the synergistic action of three categories of enzymes: endoglucanases (EG), cellobiohydrolases (CBH) and ~-glucosidases. ~-Glucosidases are a heterogenous group of enzymes that display broad substrate specificity with respect to hydrolysis of cellobiose and different aryl- and alkyl-ê-u-glucosides. They not only catalyse the final step in the saccharification of cellulose, but also stimulate the extent of cellulose hydrolysis by relieving the cellobiose mediated inhibition of EG and CBH. The ability to utilize cellobiose is widespread among gram-negative, gram-positive, and Archaea bacterial genera. Cellobiose phosphoenolpyruvate- dependent phosphotransferase systems (PTS) have been reported in various bacteria, including: Bacillus species. In this study, we have used a cellobiose chromophore analog, p-nitrophenyl- ~-D-glucopyranoside (pNPG), to screen a Bacillus pumilus genomic library for cellobiose utilization genes that are functionally expressed in Escherichia coli. Cloning and sequencing of the most active clone with subsequent sequence analysis allowed the identification of four adjacent open reading frames. An operon of four genes (celBACH), encoding a cellobiose phosphotransferase system (PTS): enzyme II (encoded by celB, celA and celC) and a ó-phospho-f-glucosidase (encoded by celH) was derived from the sequence data. The amino acid sequence of the celH gene displayed good homology with ~-glucosidases from Bacillus halodurans (74.2%), B. subtilis (72.7%) and Listeria monocytogenes (62.2%). .As implied by sequence alignments, the celH gene product belongs to family 1 of the glycosyl hydrolases, which employ a retaining mechanism of enzymatic bond hydrolysis. In vivo PTS activity assays concluded that the optimal temperature and pH at which the recombinant E. coli strain hydrolysed pNPG were pH 7.5 and 45°C, respectively. Unfortunately, at 45°C the CelBACH-associated activity of the recombinant strain was only stable for 20 minutes. It was also shown that the enzyme complex is very sensitive to glucose. Since active growing cells metabolise glucose very rapidly this feature is not a significant problem. Constitutive expression of the B. pumilus celBACH genes in E. coli enabled the host to efficiently metabolise cellobiose as a carbon source. However, cellobiose utilization was only achievable in the presence ofO.01% glucose. This phenomenon could be explained by the critical role of phosphoenolpyruvate (PEP) as the phosphate donor in PTS-mediated transport. Glucose supplementation induced the glycolytic pathway and subsequently the availability of PEP. Furthermore, it could be concluded that the general PTS components . (enzyme I and HPr) of E. coli must have complemented the CelBACH system from B. pumilus to allow functionality of the celBACH operon, in the recombinant E. coli host. === AFRIKAANSE OPSOMMING: Sellulose (' n polimeer van p-l,4-gekoppelde glukose) is die volopste bron van hernubare koostof in die natuur. Effektiewe afbraak van sellulose word deur die sinnergistiese werking van drie ensiernklasse bewerkstellig: endoglukanases (EG), sellobiohidrolases (CBH) en P-glukosidases. p-Glukosidases behoort tot 'n heterogene groep ensieme met 'n wye substraatspesifisiteit m.b.t. sellobiose en verskeie ariel- and alkiel-ê-n-glukosidiesc verbindings. Alhoewel hierdie ensieme primêr as kataliste vir die omskakeling van sellulose afbraak-produkte funksioneer, stimuleer hulle ook die mate waartoe sellulose hidroliese plaasvind deur eindprodukinhibisie van EG en CBH op te hef. Sellobiose word algemeen deur verskeie genera van die gram-negatiewe, gram-positiewe en Archae bakterieë gemetaboliseer. Die sellobiose-spesifieke fosfoenolpirovaatfosfotransportsisteem (PTS) is reeds is in verskeie bakterië, insluitende die Bacillus spesies, beskryf. In hierdie studie word die sifting van 'n Bacillus pumilus genoombiblioteek m.b.V. 'n chromofoor analoog van sellobiose, p-nitrofeniel-p-o-glukopiranosied (pNPG), vir die teenwoordigheid van gene wat moontlike sellobiose-benutting in Escherichia coli kan bewerkstellig, beskryf. Die DNA-volgorde van die mees aktiewe kloon is bepaal en daaropvolgende analiese van die DNA-volgorde het vier aangrensende oopleesrame geïdentifiseer. 'n Operon (celBACH), bestaande uit vier gene, wat onderskeidelik vir die ensiem II (gekodeer deur celB, celA en celC) en fosfo-B-glukosidase (gekodeer deur celH) van die sellobiose-spesifieke PTS van B. pumilus kodeer, is vanaf die DNA-volgorde afgelei. Die aminosuuropeenvolging van die celH-geen het goeie homologie met P-glukosidases van Bacillus halodurans (74.2%), B. subtilis (72.7%) en Listeria monocytogenes (62.2%) getoon. Belyning van die DNA-volgordes het aangedui dat die celH geenproduk saam met die familie 1 glikosielhidrolases gegroepeer kan word. Hierdie familie gebruik 'n hidrolitiese meganisme waartydens die stoigiometriese posisie van die anomeriese koolstof behou word. PTS-aktiwiteit van die rekombinante E. coli ras, wat die celBACH gene uitdruk, is in vivo bepaal. Die optimale temperatuur en pH waarby die rekombinante ras pNPG hidroliseer, is onderskeidelik pH 7.5 en 45°C. Alhoewel die ensiernkompleks baie sensitief is vir glukose, is dit nie 'n wesenlike probleem nie, omdat aktief groeiende E. coli selle glukose teen 'n baie vinnige tempo benut. Die celBACH operon het onder beheer van 'n konstitiewe promotor in E coli die rekombinante gasheer in staat gestelom sellobiose as 'n koolstofbron te benut. Die benutting van sellobiose word egter aan die teenwoordigheid van 'n lae konsentrasie glukose (0.01 %) gekoppel. Hierdie verskynsel dui op die kritiese rol van fosfoenolpirovaat (PEP) as die fosfaatdonor gedurende PTS-gebaseerde transport. Glukose speel waarskynlik 'n rol in die indusering van glikoliese, en sodoende die produksie van PEP as tussenproduk. Verder kan afgelei word dat die algemene PTS komponente (ensiem I en HPr) van E. coli die B. pumilis CelBACH-sisteem komplementeer en derhalwe funksionering van die celBACH operon in E. coli toelaat.
author2 Van Zyl, W. H.
author_facet Van Zyl, W. H.
Van Rooyen, Ronel, 1976-
author Van Rooyen, Ronel, 1976-
author_sort Van Rooyen, Ronel, 1976-
title Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli
title_short Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli
title_full Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli
title_fullStr Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli
title_full_unstemmed Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli
title_sort cloning of a novel bacillus pumilus cellobiose-utilising system : functional expression in escherichia coli
publisher Stellenbosch : Stellenbosch University
publishDate 2012
url http://hdl.handle.net/10019.1/52733
work_keys_str_mv AT vanrooyenronel1976 cloningofanovelbacilluspumiluscellobioseutilisingsystemfunctionalexpressioninescherichiacoli
_version_ 1718164864420020224
spelling ndltd-netd.ac.za-oai-union.ndltd.org-sun-oai-scholar.sun.ac.za-10019.1-527332016-01-29T04:03:30Z Cloning of a novel Bacillus pumilus cellobiose-utilising system : functional expression in Escherichia coli Van Rooyen, Ronel, 1976- Van Zyl, W. H. La Grange, D. C. Stellenbosch University. Faculty of Science. Dept. of Microbiology. Bacillus (Bacteria) -- Genetics Escherichia coli -- Genetics Cellulose -- Biodegradation Carbon cycle (Biogeochemistry) Thesis (MScAgric)--University of Stellenbosch, 2002. ENGLISH ABSTRACT: Cellulose, a ~-1,4-linked polymer of glucose, is the most abundant renewable carbon source on earth. It is well established that efficient degradation of cellulose requires the synergistic action of three categories of enzymes: endoglucanases (EG), cellobiohydrolases (CBH) and ~-glucosidases. ~-Glucosidases are a heterogenous group of enzymes that display broad substrate specificity with respect to hydrolysis of cellobiose and different aryl- and alkyl-ê-u-glucosides. They not only catalyse the final step in the saccharification of cellulose, but also stimulate the extent of cellulose hydrolysis by relieving the cellobiose mediated inhibition of EG and CBH. The ability to utilize cellobiose is widespread among gram-negative, gram-positive, and Archaea bacterial genera. Cellobiose phosphoenolpyruvate- dependent phosphotransferase systems (PTS) have been reported in various bacteria, including: Bacillus species. In this study, we have used a cellobiose chromophore analog, p-nitrophenyl- ~-D-glucopyranoside (pNPG), to screen a Bacillus pumilus genomic library for cellobiose utilization genes that are functionally expressed in Escherichia coli. Cloning and sequencing of the most active clone with subsequent sequence analysis allowed the identification of four adjacent open reading frames. An operon of four genes (celBACH), encoding a cellobiose phosphotransferase system (PTS): enzyme II (encoded by celB, celA and celC) and a ó-phospho-f-glucosidase (encoded by celH) was derived from the sequence data. The amino acid sequence of the celH gene displayed good homology with ~-glucosidases from Bacillus halodurans (74.2%), B. subtilis (72.7%) and Listeria monocytogenes (62.2%). .As implied by sequence alignments, the celH gene product belongs to family 1 of the glycosyl hydrolases, which employ a retaining mechanism of enzymatic bond hydrolysis. In vivo PTS activity assays concluded that the optimal temperature and pH at which the recombinant E. coli strain hydrolysed pNPG were pH 7.5 and 45°C, respectively. Unfortunately, at 45°C the CelBACH-associated activity of the recombinant strain was only stable for 20 minutes. It was also shown that the enzyme complex is very sensitive to glucose. Since active growing cells metabolise glucose very rapidly this feature is not a significant problem. Constitutive expression of the B. pumilus celBACH genes in E. coli enabled the host to efficiently metabolise cellobiose as a carbon source. However, cellobiose utilization was only achievable in the presence ofO.01% glucose. This phenomenon could be explained by the critical role of phosphoenolpyruvate (PEP) as the phosphate donor in PTS-mediated transport. Glucose supplementation induced the glycolytic pathway and subsequently the availability of PEP. Furthermore, it could be concluded that the general PTS components . (enzyme I and HPr) of E. coli must have complemented the CelBACH system from B. pumilus to allow functionality of the celBACH operon, in the recombinant E. coli host. AFRIKAANSE OPSOMMING: Sellulose (' n polimeer van p-l,4-gekoppelde glukose) is die volopste bron van hernubare koostof in die natuur. Effektiewe afbraak van sellulose word deur die sinnergistiese werking van drie ensiernklasse bewerkstellig: endoglukanases (EG), sellobiohidrolases (CBH) en P-glukosidases. p-Glukosidases behoort tot 'n heterogene groep ensieme met 'n wye substraatspesifisiteit m.b.t. sellobiose en verskeie ariel- and alkiel-ê-n-glukosidiesc verbindings. Alhoewel hierdie ensieme primêr as kataliste vir die omskakeling van sellulose afbraak-produkte funksioneer, stimuleer hulle ook die mate waartoe sellulose hidroliese plaasvind deur eindprodukinhibisie van EG en CBH op te hef. Sellobiose word algemeen deur verskeie genera van die gram-negatiewe, gram-positiewe en Archae bakterieë gemetaboliseer. Die sellobiose-spesifieke fosfoenolpirovaatfosfotransportsisteem (PTS) is reeds is in verskeie bakterië, insluitende die Bacillus spesies, beskryf. In hierdie studie word die sifting van 'n Bacillus pumilus genoombiblioteek m.b.V. 'n chromofoor analoog van sellobiose, p-nitrofeniel-p-o-glukopiranosied (pNPG), vir die teenwoordigheid van gene wat moontlike sellobiose-benutting in Escherichia coli kan bewerkstellig, beskryf. Die DNA-volgorde van die mees aktiewe kloon is bepaal en daaropvolgende analiese van die DNA-volgorde het vier aangrensende oopleesrame geïdentifiseer. 'n Operon (celBACH), bestaande uit vier gene, wat onderskeidelik vir die ensiem II (gekodeer deur celB, celA en celC) en fosfo-B-glukosidase (gekodeer deur celH) van die sellobiose-spesifieke PTS van B. pumilus kodeer, is vanaf die DNA-volgorde afgelei. Die aminosuuropeenvolging van die celH-geen het goeie homologie met P-glukosidases van Bacillus halodurans (74.2%), B. subtilis (72.7%) en Listeria monocytogenes (62.2%) getoon. Belyning van die DNA-volgordes het aangedui dat die celH geenproduk saam met die familie 1 glikosielhidrolases gegroepeer kan word. Hierdie familie gebruik 'n hidrolitiese meganisme waartydens die stoigiometriese posisie van die anomeriese koolstof behou word. PTS-aktiwiteit van die rekombinante E. coli ras, wat die celBACH gene uitdruk, is in vivo bepaal. Die optimale temperatuur en pH waarby die rekombinante ras pNPG hidroliseer, is onderskeidelik pH 7.5 en 45°C. Alhoewel die ensiernkompleks baie sensitief is vir glukose, is dit nie 'n wesenlike probleem nie, omdat aktief groeiende E. coli selle glukose teen 'n baie vinnige tempo benut. Die celBACH operon het onder beheer van 'n konstitiewe promotor in E coli die rekombinante gasheer in staat gestelom sellobiose as 'n koolstofbron te benut. Die benutting van sellobiose word egter aan die teenwoordigheid van 'n lae konsentrasie glukose (0.01 %) gekoppel. Hierdie verskynsel dui op die kritiese rol van fosfoenolpirovaat (PEP) as die fosfaatdonor gedurende PTS-gebaseerde transport. Glukose speel waarskynlik 'n rol in die indusering van glikoliese, en sodoende die produksie van PEP as tussenproduk. Verder kan afgelei word dat die algemene PTS komponente (ensiem I en HPr) van E. coli die B. pumilis CelBACH-sisteem komplementeer en derhalwe funksionering van die celBACH operon in E. coli toelaat. 2012-08-27T11:35:08Z 2012-08-27T11:35:08Z 2002-12 Thesis http://hdl.handle.net/10019.1/52733 en_ZA Stellenbosch University 82 p. : ill. Stellenbosch : Stellenbosch University