Summary: | This thesis has investigated radioclimatological study in a clear-air environment as applicable to terrestrial line of sight link design problems. Radioclimatological phenomena are adequately reviewed both for the precipitation effect and clear-air effect. The research focuses more on the clear-air effect of radioclimatological studies. Two Southern African countries chosen for case study in the report are Botswana and South Africa. To this end, radiosonde data gathered in Maun, Botswana and Durban, South Africa are used for model formulation and verification. The data used in the thesis ranges from three years to ten years in these two stations. Three to ten years of refractivity data gathered in Botswana and South Africa is used for the model formulation. On the other hand, eight months signal level measurement data recorded from the terrestrial line of sight link set up between Howard College and Westville Campuses of the University of KwaZulu-Natal, Durban South Africa is used for model verification. Though various radioclimatic parameters could affect radio signal propagation in the clear-air environment, this report focuses on two of these parameters. These two parameters are the geoclimatic factor and effective earth radius factor (k-factor). The first parameter is useful for multipath fading determination while the second parameter is very important for diffraction fading, modeling and characterization. The two countries chosen have different terrain and topographical structures; thus further underlying the choice for these two parameters. While Maun in Botswana is a gentle flat terrain, Durban in South Africa is characterized by hilly and mountainous terrain structure, which thus affects radioclimatological modeling in the two countries. Two analytical models have been proposed to solve clear-air radioclimatic problems in Southern Africa in the thesis. The first model is the fourth order polynomial analytical expression while the second model is the parabolic equation. The fourth order polynomial model was proposed after an extensive analysis of the eight month signal level measurement data gathered in Durban, South Africa. This model is able to predict the fade exceedance probabilities as a function of fade depth level. The result from the fourth order polynomial model is found to be comparable with other established multipath propagation model reviewed in the thesis. Availability of more measurement data in more location will be necessary in future to further refine this model. The second model proposed to solve clear-air propagation problem in the thesis is the modified parabolic equation. We chose this technique because of its strength and its simplistic adaptation to terrestrial line of sight link design problem. This adaptation is possible because, the parabolic equation can be modified to incorporate clear-air parameters. Hence this modification of the parabolic equation allows the possibility of a hybrid technique that incorporates both the statistical and mathematical procedures perfectly into one single process. As a result of this, most of the very important phenomena in clear-air propagation such as duct occurrence probabilities, diffraction fading and multipath fading is captured by this technique. The standard parabolic equation (SPE) is the unmodified parabolic equation which only accounts for free space propagation, while the modified parabolic equation (MPE) is the modified version of the parabolic equation. The MPE is classified into two in the thesis: the first modified parabolic equation (MPE1) and second modified parabolic equation (MPE2). The MPE1 is designed to incorporate the geoclimatic factor which is intended to study the multipath fading effect in the location of study. On the other hand, MPE2 is the modified parabolic equation designed to incorporate the effective earth radius factor (k-factor) intended to study the diffraction fading in the location of study. The results and analysis of the results after these modifications confirm our expectation. This result shows that signal loss is due primarily to diffraction fading in Durban while in Botswana, signal loss is due primarily to multipath. This confirms our expectation since a flatter terrain attracts signal loss due to multipath while hilly terrain attracts signal loss due to diffraction fading. === Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2010.
|